Common-Drain Amplifier

\[I_{DS} = \mu C_{ox} \frac{W}{L} \left(\frac{1}{2} (V_{GS} - V_T)^2 \right) \]

\[V_{GS} = V_T + \frac{2I_{DS}}{\mu C_{ox} \frac{W}{L}} \]

Weak \(I_{DS} \) dependence
Two-Port CD Model with Capacitors

Ignore g_{mb}

Find Miller capacitor for C_{gs} -- note that the gate-source capacitor is between the input and output

Voltage Gain A_{vCgs} Across C_{gs}

$$A_{vCgs} = \frac{R_{out}}{R_L + R_{out}} \approx 1$$

This gain is independent of C_{gs}

$$C_{in} = C_{gd} + C_M = C_{gd} + (1 - A_{vCgs})C_{gs}$$

$$C_{in} = C_{gd} + \frac{1}{1 + g_m R_L} C_{gs}$$

$$C_{in} \approx C_{gd}$$
Bandwidth of CD Amplifier

Input low-pass filter’s –3 dB frequency:

\[\omega_p^{-1} = R_S \left(C_{gd} + \frac{C_{gs}}{1 + g_m R_L} \right) \]

Substitute favorable values of \(R_S, R_L \):

\[R_S \approx 1/g_m \quad R_L >> 1/g_m \]

\[\omega_p^{-1} \approx \left(1/g_m \right) \left(C_{gd} + \frac{C_{gd}}{1 + B/G} \right) \approx C_{gd}/g_m \]

\[\omega_p \approx g_m/C_{gd} > \omega_T \]

Model not valid at these high frequencies

Bandwidth of the Common-Gate Amplifier
Two-Port CG Model with Capacitors

No Miller-transformed capacitor!
Unity-gain frequency is on the order of ω_T for small R_L

Summary of Single-Stage Amplifiers

- **CS**: suffers from Miller-magnified capacitor for high-gain case
- **CD**: Miller transformation \rightarrow nulled capacitor \rightarrow “wideband stage”
- **CG**: no Miller capacitor \rightarrow wideband stage (for low load resistance)