1. A sample of silicon is doped with $N_d = 1.1 \times 10^{13}$ cm$^{-3}$ and $N_a = 1 \times 10^{13}$ cm$^{-3}$.
 a) Which carrier is the majority carrier?
 b) What type is the silicon (n or p)?
 c) Find the electron and hole concentration at room temperature.

2. A sample of silicon is doped with $N_d = 2 \times 10^{16}$ cm$^{-3}$.
 a) What is the electron concentration and mobility?
 b) We want to dope to the electron concentration of 1×10^{16} cm$^{-3}$. What is the additional dopant type and concentration? What is the new electron mobility?

3. Given an n-type ion-implanted layer with thickness $t = 1$ μm and average doping concentration $N_d = 10^{17}$ cm$^{-3}$.
 a) What is the sheet resistance?
 b) What is the resistance of the layout shown below? (Assume that the contact regions each contribute 0.65 squares.)

 ![Layout Diagram]

 L = 150 μm
 W = 3 μm

 c) By adding additional dopants, we make a new n-type ion-implanted resistor with an average doping concentration $N_{d1} = 2 \times 10^{17}$ cm$^{-3}$ over the depth $0 < x < 0.25$ μm and $N_{d2} = 10^{17}$ cm$^{-3}$ over the depth 0.25 μm < x < 1 μm. Find the new sheet resistance.