Lecture 29

• Last time:
 – Transistor action, large-signal operation

• Today :
 – Ebers-Moll model
 – Small-signal model of the npn bipolar transistor
Transconductance (cont.)

• Forward-active large-signal current:

\[i_C = I_S e^{v_{BE}/V_{th}} (1 + v_{CE}/V_A) \]

• Differentiating and evaluating at \(Q = (V_{BE}, V_{CE}) \)
Comparison with MOSFET g_m

- Bipolar transistor:

- MOSFET:

- Typical bias point: drain/coll. current = 100 μA; Select $(W/L) = 8/1$, $\mu_n C_{ox} = 100$ μA/V2
What about the Base Current?

Unlike MOSFET, there is a DC current into the base terminal of a bipolar transistor:

\[I_B = I_C / \beta_F = (I_S / \beta_F)e^{V_{BE}/V_{th}}(1 + V_{CE}/V_{th}) \]

To find the change in base current due to change in base-emitter voltage:

\[\frac{\partial i_B}{\partial v_{BE}} \bigg|_Q = \frac{\partial i_B}{\partial i_C} \bigg|_Q \frac{\partial i_C}{\partial v_{BE}} \bigg|_Q = \]
Small-Signal Current Gain β_0
Input Resistance r_π

$$(r_\pi)^{-1} = \left. \frac{\partial i_B}{\partial v_{BE}} \right|_Q$$

In practice, the DC current gain β_F and the small-signal current gain β_o are both highly variable (+/- 25%)

Typical bias point: DC collector current = 100 μA
Output Resistance r_o

Why does current increase slightly with increasing v_{CE}?

Model: math is a mess, so introduce the Early voltage

$$i_C = I_S e^{v_{BE}/V_{th}} (1 + v_{CE}/V_A)$$
Graphical Interpretation of r_o

Typical value:
BJT Small-Signal Model
BJT Capacitances

Base-charging capacitance C_b: due to minority carrier charge storage (mostly electrons in the base)

$$C_b = g_m \tau_F$$

Base-emitter depletion capacitance: $C_{jE} = 1.4 \ C_{jE_0}$

Total B-E capacitance: $C_\pi = C_{jE} + C_b$
Complete Small-Signal Model
IBM SiGe Heterojunction BJT
SiGe BJT/CMOS vs. RF CMOS

From “IBM and Cadence collaborate to accelerate silicon-accurate design of advanced RF integrated circuits,” IBM Microelectronics Division, March 11, 2005.
f_T vs. I_C

Figure 2

Cutoff frequency f_T vs. I_C for four lithographic generations of SiGe. The InP curve shows recent production InP results.