Lecture 22

• Last time:
 – Gain-bandwidth product for CS amplifier
 – Start CD amplifier

• Today:
 – Finish gain-bandwidth of CD amp
 – Common-gate amplifier frequency response
Voltage Gain $A_{vC\pi}$ Across C_π

$A_{vC\pi} =$

N.B. this voltage gain is neither the two-port gain nor the “loaded” voltage gain

$C_{in} = C_\mu + C_M = C_\mu + (1 - A_{vC\pi}) C_\pi$
Bandwidth of CC Amplifier

Input low-pass filter’s –3 dB frequency:

\[
\omega_p^{-1} = (R_S \parallel R_{in}) \left(C_\mu + \frac{C_\pi}{1 + g_m R_L} \right)
\]

Substitute favorable values of \(R_S, R_L \):

\[R_S \approx 1 / g_m \quad R_L \gg 1 / g_m \]

\[
\omega_p^{-1} \approx \left(1 / g_m \right) \left(C_\mu + \frac{C_\pi}{1 + B I G} \right) \approx C_\mu / g_m
\]
CG Frequency Response

• The following slides are based on a bipolar equivalent to the CD amplifier. The small-signal circuit has the same topology, with these substitutions:

 \[C_\pi \rightarrow C_{gs} \]
 \[C_\mu \rightarrow C_{gd} \]
 \[r_\pi \rightarrow \infty \]
Bandwidth of the Common-Base Current Buffer

Same procedure: start with two-port model and capacitors
Two-Port CB Model with Capacitors

No Miller-transformed capacitor!

Unity-gain frequency is on the order of ω_T for small R_L
Summary of Single-Stage Amplifier Frequency Response

• CS: suffer from Miller-magnified capacitor for high-gain case
• CD: Miller transformation \rightarrow nulled capacitor \rightarrow “wideband stage”
• CG: no Millerized capacitor \rightarrow wideband stage (for low load resistance)