Lecture 32:

Prof. J. S. Smith

Context

Today we are going to review some of the building blocks for multi-stage amplifiers, including current sources and cascode connected devices.

We will also look at the general objectives of multi-state amplifier configurations.

Lecture Outline

- Current Mirrors
- An Example Using Cascodes
- Multistage Amps

Reading

- Chapter 9, multi-stage amplifiers
The Integrated “Current Mirror”

- M₁ and M₂ have the same V_{GS}.
- If we neglect CLM ($\lambda=0$), then the drain currents are equal.
- Since λ is small, the drain currents will be nearly equal even if V_{OUT} is not equal to V_{GS1}.
- I_{REF} is “mirrored” into i_{OUT}.
- Works for small and large signals.

Small-Signal Resistance of I-Source

- I_{REF} is a constant current source.
- I_{REF} is used to bias the rest of the circuit.

Current Mirror as Current Sink

- The output current of M₂ is only weakly dependent on V_{OUT} due to high output resistance of a long channel FET.
- M₂ acts like a current source to the rest of the circuit.

Improved Current Sources

- Goal: increase r_{oc}.
- Approach: look at amplifier output resistance results … for topologies that boost resistance.
- $R_{out} >> r_o$.
Effect of Source Degeneration

- Equivalent resistance loading gate is the small signal resistance of the the diode connected FET ... assume this is a small impedance
- Output impedance is boosted by factor \((1 + g_m R_g)\)

Cascode (or Stacked) Current Source

Insight: \(V_{GS2} = \text{constant AND} \quad V_{DS2} = \text{constant}\)

Small-Signal Resistance \(r_{oc}\):

\[
R_o \approx (1 + g_m R_g) r_e
\]
\[
R_o \approx (1 + g_m r_e) r_e
\]
\[
R_o \approx g_m r_e^2 \gg r_e
\]

The Cascode Configuration

Common source / common gate cascade is called a cascode

Remember that the common gate amplifier can take a poor current source and turn it into a better one.

Drawback of Cascode I-Source

Minimum output voltage to keep both transistors in saturation:

\[
V_{OUT,MIN} = V_{DS4,MIN} + V_{GS2,MIN}
\]
\[
V_{GS2,MIN} > V_{GS2} - V_T \Rightarrow V_{GS2} = V_{GSAT2}
\]
\[
V_{G4} > V_{GSAT2} + V_{GS4} = V_{GS2} + V_{GS4} - V_T
\]
\[
V_{OUT,MIN} = V_{GS2} + V_{GS4} - V_T
\]
Current Sinks and Sources

Sink: output current goes to ground

Source: output current comes from voltage supply

Multistage Amplifiers

Necessary to meet typical specifications for any of the 4 types

We have 2 flavors (NMOS, PMOS) of CS, CG, and CD and the npn versions of CE, CB, and CC (for a BiCMOS process)

What are the constraints?

1. Input/output resistance matching
2. DC coupling (no passive elements to block the signal)

Current Mirrors

We only need one reference current to set up all the current sources and sinks needed for a multistage amplifier.

Summary of Cascaded Amplifiers

General goals:

1. Boost the gain parameter (except for buffers)
2. Optimize the input and output resistances

<table>
<thead>
<tr>
<th>Parameter</th>
<th>R_{in}</th>
<th>R_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>Current</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>Transconductance</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>Transresistance</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Start: Two-Stage Voltage Amplifier

- Use two-port models to explore whether the combination “works”

Results of new 2-port: \(R_{in} = R_{in1}, R_{out} = R_{out2} \)
\[
A_v = -G_m \left(R_{in2} \parallel R_{out2} \right) \times \left(-G_m R_{out2} \right)
\]
\[
A_v = G_m G_{n2} \left(R_{in2} \parallel R_{out2} \right) \left(R_{out2} \right)
\]

Add a Third Stage: CC

Goal: reduce the output resistance
(important spec. for a voltage amp)

Output resistance:
\[
R_{out} = \frac{1}{g_{m3}} \beta + \frac{R_s}{g_{m3}} + \frac{r_{eb2}}{\beta}
\]

Using CMOS Stages

Input resistance: \(\infty \)

Voltage gain (2-port parameter): \(A_v = -g_{m1} \left(r_{in1} \parallel r_{out1} \right) \times g_{m2} \left(-r_{o2} \parallel r_{o2} \right) \)

Output resistance:
\[
R_{out} = \frac{1}{g_m + g_{nb}}
\]

Multistage Current Buffers

Are two cascaded common-base stages better than one?

Input resistance: \(R_{in} = R_{in1} \)
Two-Port Models

Output impedance of stage #1 (large)

\[R_{out} = R_{out2} \approx r_{o2} \left(1 + g_{m2} \beta r_{o2} \right) || r_{oc2} \]

Common-Gate 2nd Stage

\[R_{out} = R_{out2} \approx r_{o2} \left(1 + g_{m2} r_{o2} \right) || r_{oc2} \]

Second Design Issue: DC Coupling

Constraint: large inductors and capacitors are not available
Output of one stage is directly connected to the input of the next stage → must consider DC levels ... why?

Alternative CG-CC Cascade

Use a PMOS CD Stage: DC level shifts upward
CG Cascade: DC Biasing

Two stages can have different supply currents

Extreme case:
\[I_{BLAS2} = 0 \text{ A} \]

CG Cascade: Sharing a Supply

First stage has no current supply of its own \(\Rightarrow \) its output resistance is modified

The Cascode Configuration

Common source / common gate cascade is one version of a cascode (all have shared supplies)

DC bias:

Two-port model: first stage has no current supply of its own

Cascode Two-Port Model

Output resistance of first stage

\[R_{out,CS} = R_{down,CS} = r_{o1} \]

\[R_{out} \parallel r_{o2} \parallel (1 + g_{m2}r_{o1}) r_{o2} \]

\[G_m = r_{o2} \]

\[R_m = \infty \]

Why is the cascode such an important configuration?
Miller Capacitance of Input Stage

Find the Miller capacitance for C_{gd1}

Input resistance to common-gate second stage is low \Rightarrow gain across C_{gd1} is small.