Lecture 34

• Last time:
 – Improved current sources and current mirrors
 – Start multistage amplifiers
• Today :
 – More examples of cascades
 – DC coupling issues

Multistage Current Buffers

Are two cascaded common-base stages better than one?

\[R_{\text{in}} = R_{\text{in}1} \]
Two-Port Models

\[R_{out} = R_{out2} \cong r_{02} \left(1 + g_{m2} R_{S2} \right) \parallel r_{oc2} \]

Common-Gate 2nd Stage

\[R_{out} = R_{out2} \cong r_{02} \left(1 + g_{m2} R_{S2} \right) \parallel r_{oc2} \]
Summary of Cascaded Amplifiers

General goals:

1. Boost the gain parameter (except for buffers)
2. Optimize the input and output resistances

\[R_{in} \quad R_{out} \]

Voltage:
Current:
Transconductance:
Transresistance:

Second Design Issue: DC Coupling

Constraint: large inductors and capacitors are not available

Output of one stage is directly connected to the input of the next stage \(\rightarrow \) must consider DC levels … why?
Alternative CG-CC Cascade

Use a PMOS CD Stage: DC level shifts upward

CG Cascade: DC Biasing

Two stages can have different supply currents

Extreme case: \(I_{BIAS2} = 0 \) A
CG Cascade: Sharing a Supply

First stage has no current supply of its own \(\rightarrow \) its output resistance is modified.

Two-Port Model of Common-Gate Cascade with Shared Current Supply