Lecture 19

• Last time:
 – DC and small-signal model of the forward-biased diode

• Today:
 – the npn bipolar junction transistor (BJT):
 large-signal characteristics

nnp Bipolar Transistor Structure
npn Bipolar Transistor Layout

BJT Symbol
Measuring the BJT’s Collector Characteristics

\[I_C = I_C(I_B, V_{CE}) \]

Collector Characteristics

- \(I_B = 2.5 \mu A \)
- \(I_B = 2 \mu A \)
- \(I_B = 1.5 \mu A \)
- \(I_B = 1 \mu A \)
- \(I_B = 500 \text{ nA} \)
- \(I_B = 1 \text{ mA} \)
- \(I_B = 2 \text{ mA} \)
- \(I_B = 0 \) (cutoff)
- \(I_B = 0 \) (reverse active)
Base-Emitter Voltage Control

```
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

C. J. Spanos
EECS 105 Spring 2003 Lecture 19

"Transistor Action"

```


Department of EECS
University of California at Berkeley
Diffusion Currents

BJT Currents

Collector current is nearly identical to the (magnitude) of the emitter current … define

\[I_C = -\alpha_F I_E \]

Kirchhoff:

\[-I_E = I_C + I_B \]

DC Current Gain:
Origin of α_F

Base-emitter junction: some reverse injection of holes into the emitter \rightarrow base current isn’t zero

Typical α_F