Lecture 26

- Last time:
 - Finish methods for finding two-port model parameters
 - Start common-source amplifier

- Today:
 - Current-source supplies
 - Common-gate amplifier

Use these results!
Two-Port Parameters:

Find R_{in}, R_{ou}, G_m

$\frac{v_e}{i_e} = \frac{v_e}{R_{in}} = \frac{v_e}{0} = \infty$

$R_{out} = \frac{v_e}{i_e}$

$V_{out} = 0$ after R_e on

$R_{in} = R_e$ before R_e on

$V_{source} = 0$ (grounded)

$V_{out} = 0$

$R_{load} = 0$

$R_{in} \cdot R_{load} = 0$

$V_{out} = 0$

$R_{load} = 0$

$R_{source} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$

$R_{load} = 0$

$V_{source} = 0$

$V_{out} = 0$
Two-Port CS Model

Reattach source and load one-ports:

\[v_{out} = -G_m \left[R_{out} \| R_c \right] \cdot v_{in} \]

\[A_v^\ast = \frac{v_{out}}{v_{in}} = -G_m \left[\frac{r_o \| R_D}{11R_c} \right] \]
Non-Ideal Current Sources

- We want to have both R_D and a very large g_m at the same time... how to do it?

The gain depends on the small-signal resistance; the DC current can be set by a supply voltage V_{SUP} and modified by the load line.

\[V = \frac{V_{SUP}}{R_0} \]

$R_0 = \frac{1}{g_m} \times \frac{1}{100k \Omega}$

Big!
Current Source Supply
Common-Source Amplifier with Current Source Supply

\[
\text{Gray Circle}
\]

\[
\text{Gray Box Small-Signal}
\]

\[
\text{Not There for DC Bias}
\]

Dept. of EECS

University of California at Berkeley
Load Line for DC Biasing

Both the I-source and the transistor are idealized for DC bias analysis:

\[I_D = I_{sW} = 2.5 \, \mu A = 0.25 \, mA \]
TRANSFER CURVE

\[\frac{dV_{out}}{dV_{bias}} = -\infty \]
Two-Port Parameters

```
<table>
<thead>
<tr>
<th>Gm</th>
<th>fsw</th>
</tr>
</thead>
</table>
```


t_{out}

\[R_{\text{in}} = 0 \]

\[R_{\text{out}} = \frac{g_m}{\frac{1}{f_{\text{sw}}} + \frac{1}{f_{\text{oc}}}} \]

From current source supply

Not usable bias.
P-Channel CS Amplifier

DC bias: \(V_{SG} = V_{DD} - V_{BIAS} \) sets drain current \(-I_{DP} = I_{SUP} \)
Two-Port Model Parameters

Small-signal model for PMOS and for rest of circuit
Common Gate Amplifier

DC bias:

\[V^+ \]

\[I_{SUP} \leftarrow OA \]

\[V^- \]

\[I_{SUP} = I_D \]

\[I^* = I_D \]

\[I_{OUT1} = -I_D = -I_{SUP} \]

GATE IS "COMMON"

GARY...

S.S. ELEMENTS.

dept. of EECS
CG as a Current Amplifier: Find A_i

\[i_{\text{out}} = i_d = -i_g - i_s = -i_t \]

\[A_i = \frac{i_{\text{out}}}{i_t} \]

For $R_s = \infty$ and $R_L = 0$:

\[A_i = \frac{-i_c}{i_t} = -1 \]