Course Overview

- EE 105 – new version
 - Prerequisite: EECS 40
 - Analog integrated circuits + basic IC device models needed to design them
 - Course incorporates a laboratory

Related courses:
- EE 130, 140, 141, 142

[RE-ENMCL...]
[TELZERHAS]

Thursday 6:30-9:30
RTH OH 485 Cory Hall
have DECCs

\[
\begin{align*}
M & \quad 10:30-12 \\
Tues & \quad 10:30-12 \\
\end{align*}
\]
\[\times \ 3-7263\]

4 hrs. until PS is due.

DISC TAS

Jonathan Choy
Ken Do

WEB PAGE

EE 105.

LAB TAS

Blake Lin
[Malcolm Dunca...]

blakelin@eicor.berkeley.edu

497 Cory Hall (BSAC Office)

Brain or Jessica.

EE105 handouts.
Sinusoidal Function Review

\[v(t) = V \cos(\omega t + \phi) \]

- **amplitude**: (half of peak-to-peak)
- **frequency**: (radian) \(\omega = 2\pi f = 2\pi \left(1/T\right) \)
- **phase**: (degrees or radians)

H_2: \(\frac{1}{S} \)

EECS 40

IMPORTANT ANALOG INPUTS TOO.
Graphical Description

\[v_1(t) = v \cos(\omega t) \]
\[v_2(t) = v \cos(\omega t - 45) \]
\[\omega = \frac{2\pi}{T} \]

\[\omega t' = 45^\circ = \frac{\pi}{4} \]
\[\omega t' - 45^\circ = 0 \]
\[t' = \frac{\omega}{\omega} = \frac{t'}{t} \]
\[t' = \frac{1}{8} \]

\[\left(\frac{\pi}{4}, \frac{3\pi}{4} \right) = \frac{3\pi}{2} \]

\[\left(\frac{3\pi}{4}, \frac{2\pi}{2} \right) = \frac{\pi}{2} \]

\[\left(\frac{\pi}{4}, \frac{3\pi}{4} \right) = \pi \]

\[\left(\frac{3\pi}{4}, \frac{2\pi}{2} \right) = \frac{\pi}{2} \]

<table>
<thead>
<tr>
<th>t</th>
<th>\omega t</th>
<th>\cos \omega t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T/4</td>
<td>\pi/2</td>
<td>0</td>
</tr>
<tr>
<td>T/2</td>
<td>\pi</td>
<td>-1</td>
</tr>
<tr>
<td>3T/4</td>
<td>3\pi/2</td>
<td>0</td>
</tr>
</tbody>
</table>

Dept. of EECS

University of California at Berkeley
Why are Sinusoids Important?

Any periodic signal $v(t)$ can be expressed as a sum of sinusoidal signals by a Fourier series expansion (EECS 20N, EE 120).

- The response of a linear circuit to a sinusoidal input, as a function of its frequency ω, leads to insights into the behavior of the circuit.
Linear Circuits

- Theorem: solutions for voltages and currents in a linear circuit (i.e., one consisting of R, L, C and dependent sources G_m, R_m, A_v, and A_i) with a sinusoidal signal as the input are:

 - Output: Sinusoids!
 - Shifted phase
 - Modified amplitude