Lecture 12

- Last time:
 - pn junction *small-signal* capacitance
 - start MOS structure

- Today:
 - MOS charge storage
 - MOS capacitor
MOS Structure

D.C.

I_G = 0

Charge Storage Element
AC, Au, Mo, W.

What type of charge... in substrate.

p-type
\(\varepsilon_s = 11.7 \varepsilon_0 \)

n-type

Metal interconnect to bulk

Gate oxide
\(\varepsilon_{ox} = 3.9 \varepsilon_0 \)

45C

8T ±

Dept. of EECS

University of California at Berkeley
Thermal Equilibrium.

Charged bi-layer forms: + charges on gate, - in substrate

Built-in voltage between gate and substrate
Applying a DC Voltage V_{GB}

Goal: find out how the gate charge Q_G varies as a function of the applied voltage V_{GB}.

$V_{GB} = 0$ V.

Procedure:

- (i) go negative until built-in charge is cancelled.
- (ii) keep going until charge on gate is negative.
- (iii) go positive from thermal equilibrium.
- (iv) keep increasing V_{GB} until ...
Cancel the Built-in Voltage

Apply V_{FB} to "zero" the built-in voltage

$V_{GB} = V_{FB}$

$V_{BE} = -0.2$
-0.3

$V_{BE} < 0$

$V_{FB} = \text{"flat band" voltage}$
$= -0.9 \text{V}$

Thermal Equil. M

$R_x = \ldots 0$

Dept. of EECS

University of California at Berkeley
Accumulation

\[V_{GB} < V_{FB} \quad (\approx -0.9 \text{ V}) \]

- DOPED WITH
 - p-type
 - n-type

- OPPOSITES ATTRACT:

\[\rho(x) \]

\[+ \text{CHARGE \ldots holes! mobile,} \]

\[Q_0 = C_{ox}(V_{GB} - V_{FB}) \]

\[\text{true for} \quad V_{GB} < V_{FB} \]

\[C = C_{ox} = \frac{E_{ox}}{t_{ox}} \approx \frac{4 \times 10^6}{11 \times 10^{-3}} \text{ C/V} \]
Depletion: \(V_{GB} > V_{FB} \)

\[V_{FB} < V_{GB} < V_{Tn} \]

\[Q_G = f(V_{gs}) \]

For \(V_{gs} > V_{FB} \)

\[V_{gs} = 0, 0.5, 1, 1.5, 2, \ldots, 20 \text{V} \]

Dept. of EECS
Vertical E field increases at the surface, lowering the barrier between the n-type region next to the gate and the channel underneath it... eventually (at $V_{\text{GB}} = V_{Tn}$), electrons flood in and the surface of the substrate has an inversion layer.
MOS Capacitor in Inversion

Increasing voltage → additional charge stored in inversion layer
Charge vs. Voltage Curve

- $Q_s (V_{GB})$
- $Q_B (V_{GB})$
- V_{FB}
- V_{Tm}
MOS Capacitance vs. Voltage

\[V_{FB} = 0.6 \text{ V} \]

\[V_{Tn} = 0.6 \text{ V} \]