Lecture 9

• Last time:
 – Drift current density
 – Ohm’s and resistivity

• Today :
 – IC resistors
 – IC capacitors: metal-metal and pn junction
Using Sheet Resistance

- Ion-implanted (or “diffused”) IC resistor
Idealizations

• Why does current density J_n “turn”?
• What is the thickness of the resistor?
• What is the effect of the contact regions?
IC Capacitors

Metal layers separated by insulators \rightarrow get intentional (or parasitic) capacitor

$$C = \frac{\varepsilon d}{t_d}$$
Metal-Metal Capacitor Layout

Overlapping area A_{12}
Circuit Model

- Capacitance between metal 1 and metal 2:
 \[C_{12} = \left(\frac{\varepsilon d}{t_d} \right) A_{12} \]

- Other capacitors: what is terminal 3?
Surface Charge and Electric Field

\[Q \text{ (C/cm}^2\text{)} \]

\[V \]

\[x \]

\[0 \]

\[t_d \]
pn Junction

- Present in most IC structures
Junction in Thermal Equilibrium

• Mobile electrons and holes can cross junction (huge concentration difference)
• Process creates balanced + / - charge layers because the donors and acceptors are “stuck” in the lattice and can’t move
• Limiting state with $V_D = 0 \text{ V} \rightarrow$ thermal equilibrium
• “Built-in voltage” is about 1 V
At \(V_D = 0 \) V, the depletion region is depleted of holes and electrons. The charge per unit area of holes is given by \(qN_a \cdot x_{po} \) and the charge per unit area of electrons is given by \(qN_d \cdot x_{no} \). The diagram shows the p-type and n-type silicon regions.