Lecture 32

• Last time:
 – Frequency response of the CE as voltage amp
 – The Miller approximation

• Today:
 – Frequency response of voltage and current buffers
 – Start multi-stage amplifiers: Chapter 9
Common-Collector Amplifier

Procedure:

1. Small-signal two-port model
2. Add device (and other) capacitors
Two-Port CC Model with Capacitors

Find Miller capacitor for C_π -- note that the base-emitter capacitor is Between the input and output
Voltage Gain $A_{vC\pi}$ Across C_π

$$A_{vC\pi} =$$

Note: this voltage gain is neither the two-port gain nor the “loaded” voltage gain

$$C_{in} = C_\mu + C_M = C_\mu + (1 - A_{vC\pi})C_\pi$$
Bandwidth of CC Amplifier

Input low-pass filter’s –3 dB frequency:

$$\omega_p^{-1} = \left(R_S \parallel R_{in} \right) \left(C_\mu + \frac{C_\pi}{1 + g_m R_L} \right)$$

Substitute favorable values of R_S, R_L:

$$R_S \approx 1/ g_m \quad R_L >> 1/ g_m$$

$$\omega_p^{-1} \approx \left(1/ g_m \right) \left(C_\mu + \frac{C_\pi}{1 + BIG} \right) \approx C_\mu / g_m$$
Bandwidth of the Common-Base Current Buffer

Same procedure: start with two-port model and capacitors
Two-Port CB Model with Capacitors

No Miller-transformed capacitor!

Unity-gain frequency is on the order of ω_T for small R_L
Summary of Single-Stage Amplifier Frequency Response

• CE, CS: suffer from Miller-magnified capacitor for high-gain case
• CC, CD: Miller transformation \rightarrow nulled capacitor \rightarrow “wideband stage”
• CB, CG: no Millerized capacitor \rightarrow wideband stage (for low load resistance)
Multi-Stage Amplifiers: Chap. 9

• First topic: voltage and current sources (9.4)
• Generating a voltage: use a current source to set V_{GS} (or V_{BE})
Modeling the Voltage Source

Find \(i_{OUT} \) versus \(v_{OUT} \)

MOSFET is off or saturated: why?

\[
i_{OUT} = i_{D,SAT} - I_{REF} = \mu_n C_{ox} \left(\frac{W}{2L} \right)(v_{GS} - V_{Tn})^2 (1 + \lambda_n v_{DS}) - I_{REF}
\]

Typical operating point:

\(i_{OUT} = 0 \text{ A} \)
Small-Signal Source Resistance

\[R_S = \left(\frac{di_{OUT}}{dv_{OUT}} \bigg|_{I_{OUT}=0} \right)^{-1} = \frac{v_t}{i_t} \]

Equivalent Circuit:

\[R_S + i_{OUT} \]

\[V_S + v_{OUT} \]
Using a Voltage Source to Make a Current Source

Diagram:

- Voltage Source V_{DD}
- Current Source I_{REF}
- Transistor M_1
- Voltage V_{REF}
- Transistor M_2
- Output Voltage v_{OUT}
- Output Current i_{OUT}

Rest of Circuit