Lecture 25

• Last time:
 – Two-port small-signal models of amplifiers

• Today:
 – Finish methods for finding two-port model parameters
 – Start common-source amplifier
Finding the Voltage Gain A_v

Key idea: the output port is open-circuited and the source resistance is shorted

\[
A_v = \left. \frac{v_{out}}{v_{in}} \right|_{R_S = 0, \ R_L \to \infty}
\]
Finding the Current Gain A_i

Key idea: the output port is shorted and the source resistance is removed

$$A_i = \frac{i_{out}}{i_{in}} \bigg|_{R_s \to \infty, R_L = 0}$$
Finding the Transresistance R_m

$$R_m = \left. \frac{v_{out}}{i_{in}} \right|_{R_S \to \infty, R_L \to \infty}$$
Finding the Transconductance G_m

$$G_m = \left. \frac{i_{out}}{v_{in}} \right|_{R_s = 0, \ R_L = 0}$$

Two-Port Amplifier

v_{in} i_{out}
First Example: the Common-Source Amplifier (again)

What about the load resistor?
DC Bias

Load line analysis:
Load-Line Analysis to find Q
DC Transfer Function

\[V_{OUT} \]

\[V_{BIAS} \]
Small-Signal Analysis

[Diagram of a circuit with labels: v_{gs}, $g_m v_{gs}$, r_o, R_D, i_{out}, v_{out}]
Two-Port Parameters:

Find R_{in}, R_{out}, G_m
Two-Port CS Model

Reattach source and load one-ports: