Slides Week 1, ECS 105, Spring 2001, A . R. N eureuther

Microelectronics Devices and Circuits

Andrew R. Neureuther

Lecture 2

Value Added by Circuits"

How Does a Digital Camera Work?

- Physics (semiconductor junction)
" Photons => charge => voltage
- Analog Circuits
" Amplify, gray level conversion
- Digital Circuits
" Encode, store, move, play
- Analog Circuits
" Display drivers

M odel for Photo Detector

- Film sensitivity $\sim 3 \times 10^{4}$ photons

$$
\Delta Q_{S}=3 \times 10^{4} \text { electrons }
$$

- Junction capacitance $C_{J} \sim 30 \mathrm{fF}$
- $\Delta \mathrm{V}_{\mathrm{S}}=\Delta \mathrm{Q} / \mathrm{C}_{\mathrm{J}}=3 \times 10^{4} \times 1.6 \times 10^{-19} / 3 \times 10^{-14}$
R_{S}

$$
\Delta \mathrm{V}_{\mathrm{S}}=160 \mathrm{mV}
$$

- Series resistance $R_{S}=200$ Ohms

$$
\begin{aligned}
& \mathrm{V}_{\text {SOURCE }}=\mathrm{V}_{\text {BIAS }}+\Delta \mathrm{V}_{\mathrm{S}} \\
& =\mathrm{V}_{\text {BIAS }}+\Delta \mathrm{Q} / \mathrm{C}_{\mathrm{J}}
\end{aligned}
$$

Current to Voltage Conversion

- Op-Amp Circuit

Remove
Bias
$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{R}}-\mathrm{R}_{\mathrm{F}}\left\{\left(\mathrm{V}_{\text {BIAS }}+\Delta \mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{R}}\right) / \mathrm{R}_{\mathrm{S}}\right\}$
Current

Op-Amps are Ideal but EE 105 is Not

- Ideal Op-Amp properties
" No input current (Infinite $\mathrm{R}_{\text {IN! }}$) get these?
" $\mathbf{V}_{-}=\mathbf{V}_{+}$(Infinite voltage gain! With feedback) - Topic for EE 140
- Circuit configurations give the leverage to build nearly ideal circuits from devices with les than idea properties.
Don't forget about Op-Amps from EE 40 as in EE 105 we will use Op-Amps to study circuit concepts like frequency-response.

Back to the Future

- 3 MegaPixels with 3 colors requires nearly 10M OpAmps.
- If each draws $100 \mu \mathrm{~A}$, the battery must supply 1000A.

A car battery would last only 3 minutes!

- Solution: Analog switch array of 10 levels and 2^{10} 1024 factor of sharing. Resistance and Capacitance of

$\mathrm{R}_{\mathrm{SA}}=10 * 10 \mathrm{kOhms}=$ 100 kOhms

Model For Switching and Amplifier

$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{R}}-\mathrm{R}_{\mathrm{F}}\left\{\left(\mathrm{V}_{\mathrm{BIAS}}+\Delta \mathrm{V}_{\mathrm{S}^{-}} \mathrm{V}_{\mathrm{R}}\right) /\left(\mathrm{R}_{\mathrm{S}+} \mathrm{R}_{\mathrm{SA}}\right)\right\}$
$\Delta \mathrm{V}_{\mathrm{S}}$ is 10 times smaller due to C_{SA}

From 200 Ohms to 100,200 Ohms => 500X smaller signal!

Simple EE 105 Amplifier

Circuit to Hold the Charge Longer

- Problem CJ Discharges Quickly

$$
\mathrm{T}=\mathrm{C}_{J}{ }^{*} \mathrm{R}_{\mathrm{SA}}=30 \mathrm{fF} * 100 \mathrm{k} \Omega=3^{*} 10^{-10} \mathrm{Sec}
$$

- Solution: Add Value Through Circuit Design of High Input Resistance Amplifier

High Input Impedance Circuit

$$
\begin{aligned}
& R_{E}=30 \mathrm{k} \Omega \quad \mathrm{R}_{\text {IN EQ }}=\mathrm{R}_{\mathrm{IN}}+(\beta+1) \mathrm{R}_{\mathrm{E}}=3.06 \mathrm{M} \Omega \\
& 32 \text { times less current }
\end{aligned}
$$

$\mathrm{V}_{\text {OUT }}=\left[\Delta \mathrm{V}_{\mathrm{S}} /\left(\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{SA}}+\mathrm{R}_{\text {IN EQ }}\right)\right](-\beta) \mathrm{R}_{\text {LOAD }}=33 \mathrm{mV}$
37 times smaller gain

Adding a Second Stage

Visualizing as a M ultistage Amplifier

Switch First Stage Second Stage

Analog Integrated Circuits
Overview and Circuit Value Added

Visualizing as an Equivalent Two-Port

Multistage Amplifiers

This example from the reading in Chapter 8 this week.

Classification of Two-Port Amplifiers

What Goes in the Amplifier Box

M aterial from Chapter 8 from week 11.

Small Signal M odels for Transistors

Week 5

BJT
Week 8

Layout of Transistors

