University of California College of Engineering Department of Electrical Engineering and Computer Sciences

Problem Set #12 Review Problems - Not Due

EECS105

FALL, 1998

- 1. P8.8
- 2. This circuit buffers the small-signal current from a photodiode. The small-signal model for the photodiode is shown. $I_{sup} = 125 \,\mu\text{A}$, $r_{oc} = 250 \,\text{k}\Omega$, and $L = 2 \,\mu\text{m}$. Use the MOSFET parameters from p. 319. (Note the typo in the channel length modulation parameters. $\lambda n = 0.067 \,\text{V}^{-1}$.)
 - (a) Given that $I_{out} = 0$ A and $I_{BIAS} = -125 \,\mu\text{A}$. Select the width W of the NMOS such that the DC bias on the photodiode is $V_D = -1.25 \,\text{V}$.
 - (b) Draw the two-port small-signal model for this amplifier (with source and load).
 - (c) Find the numerical value of the input resistance R_{in} of this amplifier.
 - (d) Find the numerical value of the output resistance R_{out} of this amplifier.
 - (e) Find the overall current gain i_{out}/i_s for this amplifier for the case where $R_s = 50$ k Ω and $R_L = 100$ k Ω .

4. Default MOS transistor parameters: note that λ depends on L!

NMOS:
$$\mu_n C_{OX} = 100 \,\mu\text{A/V}^2$$
, $\lambda_n = [0.1/L] \,\text{V}^{-1} (L \,\text{in } \mu\text{m})$, $V_{Tn} = 1 \,\text{V}$
PMOS: $\mu_D C_{OX} = 50 \,\mu\text{A/V}^2$, $\lambda_D = [0.1/L] \,\text{V}^{-1} (L \,\text{in } \mu\text{m})$, $V_{TD} = -1 \,\text{V}$

- (a) Determine the width of transistor M_1 in μ m so that $V_x = 0$ V.
- (b) Redraw the circuit with symbolic current supplies replacing the transistor current supplies. Give the numerical value of the DC supply currents; there is no need to calculate the source resistance of this supplies.
- (c) Draw the two-port small-signal model for this two-stage amplifier. There is no need to substitute numerical values for the elements.
- (d) Find the numerical value of the output resistance Rout of this amplifier.
- (e) Find the numerical value of the open-circuit voltage gain A_{v} of this amplifier in dB.

$$L = 2 \text{ Am for all MOSFET}$$

$$(W/L)_1 = (W/L)_2 = \frac{20 \text{ Am}}{2 \text{ Am}}$$

$$(W/L)_3 = \frac{(0 \text{ Am}}{2 \text{ Am}}$$

$$(W/L)_4 = (W/L)_5 = \frac{20 \text{ am}}{2 \text{ Am}}$$

$$(W/L)_6 = \frac{(0 \text{ am}}{2 \text{ am}}$$

$$I_{REF} = 25 \text{ AA}$$

$$R_S = 5 \text{ K} \Omega$$

$$R_1 = 100 \text{ k} \Omega$$

Question 4

5. E5.9

6. An NMOS inverter with current source pull-up shown in the figure has $(W/L)_n = 6/1.5$ and $(W/L)_p = 3/6$, $V_{DD} = 3$ V and $V_B = 0$ V. Use the simplified hand calculation method shown in sections 5.4.1 and 5.4.3. Assume devices are in their constant current region. For this problem, use $\lambda_n = [0.1/L_n] \text{ V}^{-1} (L_n \text{ in } \mu\text{m})$ and $\lambda_p = [0.1/L_p] \text{ V}^{-1} (L_p \text{ in } \mu\text{m})$; $\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$. Refer to p. 319 for other MOS transistor parameters.

(b) Two identical inverters are located 1000 μ m from the driving inverter. The connecting wire is 2 μ m wide aluminum and lies on a deposited glass and field oxide layer. The total thickness of the dielectric layer is 1.0 μ m and you can assume it behaves like a parallel capacitor. The permittivity of the dielectric is $3.9\epsilon_0$. Calculate the propagation delay t_p .

(c) What is the static power consumed by this circuit?

(d) Calculate the device widths such that $C_{DB} = 100$ fF while maintaining the same V_{M} .

(e) What is t_D for the device sizes calculated in (d)?

