Frequency Response of Transistor Amplifiers

■ Simplest case: CE short-circuit current gain $A_i(j\omega)$ as a function of frequency

Kirchhoff's current law at the output node:

$$I_o = g_m V_{\pi} - V_{\pi} j \omega C_{\mu}$$

Kirchhoff's current law at the input node:

$$I_s = \frac{V_{\pi}}{Z_{\pi}} + V_{\pi} j \omega C_{\mu}$$
 where $Z_{\pi} = r_{\pi} || \left(\frac{1}{j \omega C_{\pi}} \right)$

■ Solving for V_{π} at the input node:

$$V_{\pi} = \frac{I_{s}}{(1/Z_{\pi}) + j\omega C_{\mu}}$$

Short-Circuit Gain Frequency Response

■ Substituting V_{π} into the output node equation--

$$\frac{I_o}{I_s} = \frac{g_m Z_{\pi} \left(1 - \frac{j\omega C_{\mu}}{g_m}\right)}{1 + j\omega C_{\mu} Z_{\pi}}$$

■ Substituting for Z_{π} and simplifying --

$$\frac{I_o}{I_s} = \frac{g_m r_{\pi} \left(1 - \frac{j\omega C_{\mu}}{g_m}\right)}{1 + j\omega r_{\pi} (C_{\pi} + C_{\mu})} = \frac{\beta_o \left(1 - \frac{j\omega C_{\mu}}{g_m}\right)}{1 + j\omega r_{\pi} (C_{\pi} + C_{\mu})} = \beta_o \left[\frac{1 - j\frac{\omega}{\omega_z}}{1 + j\frac{\omega}{\omega_p}}\right]$$

Current gain has one pole:

$$\omega_p = (r_{\pi}(C_{\pi} + C_{\mu}))^{-1}$$

and one zero

$$\omega_z = (g_m^{-1} C_{\mu})^{-1} \gg \omega_p$$

Bode Plot of Short-Circuit Current Gain

■ Note low frequency magnitude of gain is β_o

■ Frequency at which current gain is reduced to 0 dB is defined as the **transition** frequency ω_T . Neglecting the zero,

$$\omega_T = \frac{g_m}{(C_{\pi} + C_{\mu})}$$

Transition Frequency of the Bipolar Transistor

■ Dependence of transition time $\tau_T = \omega_T^{-1}$ on the bias collector current I_C :

$$\tau_T = \frac{1}{\omega_T} = \frac{C_{\pi} + C_{\mu}}{g_m} = \frac{g_m \tau_F + C_{jE} + C_{\mu}}{g_m}$$

$$\tau_T = \tau_F + \left(\frac{C_{jE} + C_{\mu}}{g_m}\right) = \tau_F + \frac{V_{th}}{I_C}(C_{jE} + C_{\mu})$$

- If the collector current is increased enough to make the second term negligible, then the minimum τ_T is the base transit time, τ_F . In practice, the ω_T decreases at very high values of I_C due to other effects and the minimum τ_T may not be achieved.
- Numerical values of $f_T = (1/2\pi)\omega_T$ range from 10 MHz for lateral pnp's to 10 GHz for oxide-isolated npn's

Note that the small-signal model is not valid above f_T (due to distributed effects in the base) and the zero in the current gain is not observed

Common-Source Current Gain

■ CS amplifier has a non-infinite input *impedance* for $\omega > 0$ and we can measure its small-signal current gain.

■ Analysis is similar to CE case; result is

$$\frac{I_o}{I_{in}} = \frac{g_m \left(1 - \frac{j\omega C_{gd}}{g_m}\right)}{j\omega (C_{gs} + C_{gd})} \approx \frac{g_m}{\omega (C_{gs} + C_{gd})}$$

■ Transition frequency for the MOSFET is

$$\omega_T \approx \frac{g_m}{C_{gs} + C_{gd}}$$

Transition Frequency of the MOSFET

■ Substitution of gate-source capacitance and transconductance:

$$C_{gs} = \frac{2}{3}WLC_{ox} \times C_{gd}$$
 and $g_m = \frac{W}{L}\mu_n C_{ox}(V_{GS} - V_{Tn})$

$$\omega_T \approx \frac{g_m}{C_{gs}} = \frac{\frac{W}{L} \mu_n C_{ox} (V_{GS} - V_{Tn})}{\frac{2}{3} WLC_{ox}} = \frac{3}{2} \mu_n \left[\frac{(V_{GS} - V_{Tn})}{L} \right] L$$

■ The transition time is the inverse of ω_T and can be written as the average time for electrons to drift from source to drain

$$\tau_T = \frac{L}{\mu_n \left[\frac{2}{3} \frac{(V_{GS} - V_{Tn})}{L} \right]} = \frac{L}{\left| \overline{v_{dr}} \right|}$$

velocity saturation causes τ_T to decrease linearly with L; however, submicron MOSFETs have transition frequencies that are approaching those for oxide-isolated BJTs

Frequency Response of Voltage Amplifiers

■ Common-emitter amplifier:

Procedure: substitute small-signal model and perform phasor analysis

Brute Force Phasor Analysis

■ "Exact" analysis: transform into Norton form at input to facilitate nodal analysis

Note that C_{cs} is omitted, along with r_b

Details: see Section 10.4

Factor (approximately!) into one high-frequency zero and two poles $\omega_1 << \omega_2$

$$\omega_1^{-1} = (r_{\pi} | |R_S)(C_{\pi} + (1 + g_m r_o) | |r_{oc}| |R_L)C_{\mu}) + (r_o | |r_{oc}| |R_L)C_{\mu}$$

$$\omega_{2}^{-1} = \frac{(r_{o} | |r_{oc}| | R_{L})(r_{\pi} | | R_{S}) C_{\mu} C_{\pi}}{(r_{\pi} | | R_{S})(C_{\pi} + (1 + g_{m} r_{o} | |r_{oc}| | R_{L}) C_{\mu}) + (r_{o} | |r_{oc}| | R_{L}) C_{\mu}}$$

The Miller Approximation

The "exact" analysis is not particularly helpful for gaining insight into the frequency response ... consider the effect of C_{μ} on the input only

neglect the feedforward current I_{μ} in comparison with $g_m V_{\pi}$... a good approximation

$$I_t = (V_t - V_o) / Z_{\mu}$$

$$V_o = -g_m V_t R_L / (R_L + R_{out}) = A_{\nu C \mu} V_t$$

where $A_{\nu C\mu}$ is the low frequency voltage gain across C_{μ}

$$I_t = V_t (1 - A_v) / Z_{\mu}$$

 $Z_{eff} = V_t / I_t = Z_{\mu} / (1 - A_v)$

$$Z_{eff} = \frac{1}{j\omega C_{\mu}} \left(\frac{1}{1 - A_{vC_{\mu}}} \right) = \frac{1}{j\omega (C_{\mu}(1 - A_{vC_{\mu}}))} = \frac{1}{j\omega C_{M}}$$

$$C_M = (1 - A_{vC_u})C_{\mu}$$
 is the Miller capacitor

Generalized Miller Approximation

■ An impedance Z connected across an amplifier with voltage gain $A_{\nu Z}$ can be replaced by an impedance to ground ... multiplied by $(1-A_{\nu Z})$

■ Common-emitter and common-source:

 $A_{\nu Z}$ = large and negative for C_{μ} or C_{gd} --> capacitance at the input is **magnified**

■ Common-collector and common-drain:

 $A_{vZ} \approx 1$ --> capacitance at the input due to C_{π} or C_{gs} is greatly **reduced**

Voltage Gain vs. Frequency for CE Amplifier Using the Miller Approximation

■ The Miller capacitance is lumped together with C_{π} , which results in a single-pole low-pass RC filter at the input

Transfer function has one pole and no zero after Miller approximation:

$$\omega_{3dB}^{-1} = (r_{\pi} | | R_S)(C_{\pi} + C_M)$$

$$\omega_{3dB}^{-1} = (r_{\pi} | |R_S)[C_{\pi} + (1 + g_m r_o | |r_{oc}| |R_L)C_{\mu}]$$

 $\omega_{3dB}^{-1} \approx \omega_1^{-1}$ from the exact analysis (final term $R_{out}'C_{\mu}$ is missing)

