EE 105 | Discussion 2

Kieran Peleaux & Qianyi Xie

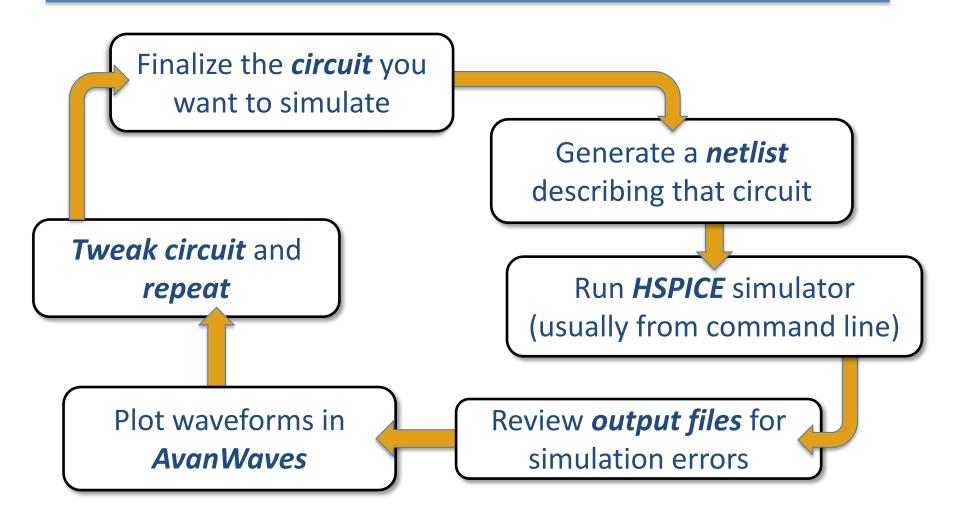
Discussion Outline

- Overview of SPICE
 - What is SPICE?
 - SPICE Workflow
 - Netlist Syntax
 - Topology & Analysis
 - Running a SPICE Simulation
 - Viewing Simulation Results
 - Beyond the Basics
- Non-ideal op amp practice

What is SPICE?

Simulation

Program with ntegrated


Circuit

Emphasis

- Software used for analog circuit simulation (originally intended for developing ICs)
 - Developed @ UC Berkeley—version 1 released in 1973 (under public domain)
- Started out as a command-line tool
- Now multiple companies offer their own packaged versions of spice
 - LTspice, HSPICE, PSpice, TINA-TI

SPICE Workflow

What is a Netlist?

- A simple text file that contains a *circuit description* and *analysis options*
- Different circuit elements specified by unique commands
- Circuit is topology defined by:
 - giving each node a unique name
 - assigning elements between these nodes

Netlist Syntax

- Filename ends in .sp
 - E.g., mycircuit.sp
- First line is always a comment!
- Not case sensitive
 - vs = Vs = VS = vS
- Last line must be .end
- Other than first/last line, order doesn't matter

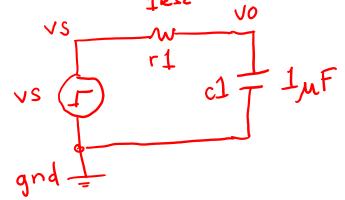
```
1 EE105 SPICE Tutorial Example 1 - Simple RC Circuit
2 vs vs gnd PWL(Os OV 5ms OV 5.001ms 5V 10ms 5V)
3 r1 vs vo 1k
4 c1 vo gnd 1uF
5 .tran 0.01ms 10ms
6 .option post=2 nomod
7 .end
```


Netlist Syntax | Topology

- Each line denotes a different circuit element
 - The 1st term defines the type of element and assigns it an arbitrary number/letter,
 - The 2nd term is the first node the element is connected to
 - The 3rd term is the second node the element is connected to (more nodes will follow for devices with >2 terminals)
 - The last term is the element value (can use prefixes f, p, n, u, m, k, meg, giga, & tera to denote magnitude)

```
1 EE105 SPICE Tutorial Example 1 - Simple RC Circuit
2 vs vs gnd PWL(Os OV 5ms OV 5.001ms 5V 10ms 5V)
3 r1 vs vo 1k
4 c1 vo gnd 1uF
5 .tran 0.01ms 10ms
6 .option post=2 nomod
7 .end
```


Netlist Syntax | Topology


- Circuit nodes & elements can have the same name
- gnd is a standard name used to reference ground (can also use 0)
- Order of nodes matters for things like sources!

```
1 EE105 SPICE Tutorial Example 1 - Simple RC Circuit
2 vs vs gnd PWL(Os OV 5ms OV 5.001ms 5V 10ms 5V)
3 r1 vs vo 1k
4 c1 vo gnd 1uF
5 .tran 0.01ms 10ms
6 .option post=2 nomod
7 .end
```


Netlist Syntax | Topology

• What does this circuit look like? Draw using labels that match the netlist.

- 1 EE105 SPICE Tutorial Example 1 Simple RC Circuit
- 2 vs vs gnd PWL(Os OV 5ms OV 5.001ms 5V 10ms 5V)
- 3 r1 vs vo 1k
- 4 c1 vo gnd 1uF
- 5 .tran 0.01ms 10ms
- 6 .option post=2 nomod
- 7 .end

Berkelev

Electrical Engineering and Computer Sciences

Netlist Syntax | Analysis

- Line 5 tells HSPICE to perform a transient analysis from time t = 0 ms to t = 10 ms in steps of 10 µs
- Line 6 tells HSPICE to generate waveform files necessary for viewing in *awaves* while not including model info in the output

```
1 EE105 SPICE Tutorial Example 1 - Simple RC Circuit
2 vs vs gnd PWL(Os OV 5ms OV 5.001ms 5V 10ms 5V)
3 r1 vs vo 1k
4 c1 vo gnd 1uF
5 .tran 0.01ms 10ms
6 .option post=2 nomod
7 .end
```


Simulating in HSPICE

• To simulate the circuit, simply run the command below in a UNIX terminal

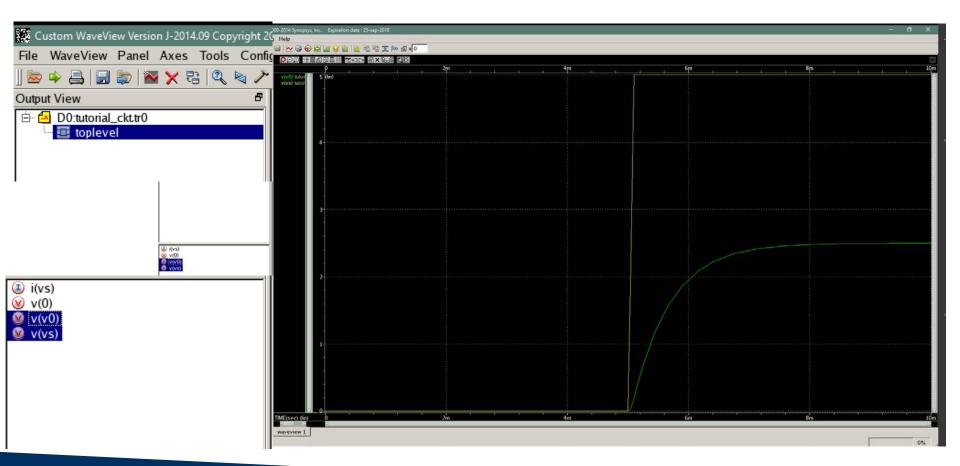
```
hspice mycircuit.sp > mycircuit.lis
```

- This will run the simulation and store the outputs in mycircuit.lis
- You can open mycircuit.lis and check for errors/operating points, but most of the time we'll be interested in looking at plots of voltages and currents

Viewing Simulation Results

 To run *awaves*, use the command below (make sure you have X11 enabled!)

awaves &


- This will run the *awaves* software and leave your terminal free to use
- Click "Open Waveform File" & navigate to the file called mycircuit.tr0

🛃 CustomExplorer Console			×
File Edit Tools Options Win	dows Help	SYNC	IPSYS
Import a New Design			
Open Existing Design(s)			
Open Waveform File	рэуз, шс.		
Load Session	Version J-2014.09 8 Aug 22 2014 11:04:31		
Save Session	21:31 (PID:14578)		
Run Tcl Script			
Save Log As			
Exit		 	_
Log History			
Command		Ш	N

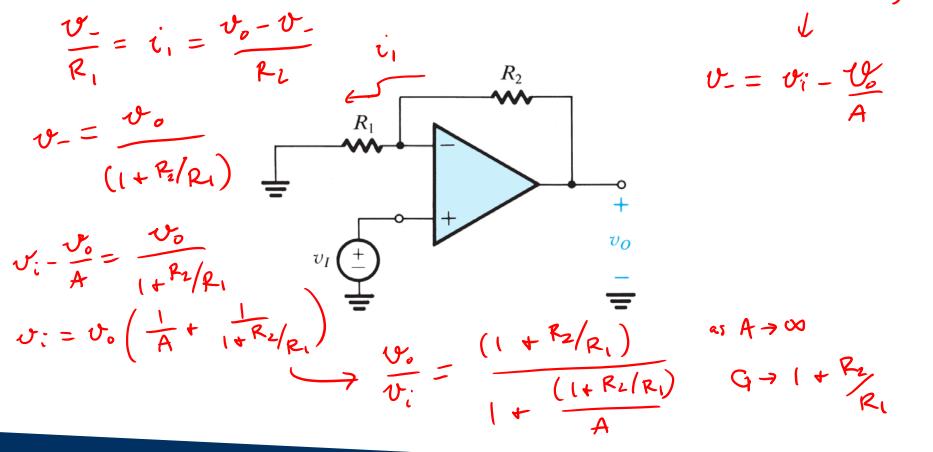
Viewing Simulation Results

• This will open up the Custom WaveView window, where you can add traces to view

Beyond the Basics

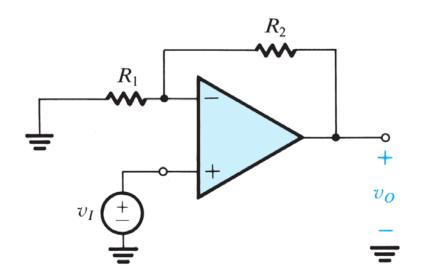
- Can perform many different type of analyses
 - AC (.ac), DC (.dc), transfer function (.tf), DC operating point (.op)
- For nonlinear devices (diodes, MOSFETs), must define a model to specify device parameters
 - Model names cannot start w/ a number!

```
1 EE105 SPICE Tutorial Example 2 - Simple Diode Circuit
2 .model tut_diode d (is=1e-14 vj=0.6 rs=10)
3 vs vs gnd 5V
4 rs vs vd 5k
5 d1 vd gnd tut_diode
6 .op
7 .end
```



Non-ideal Op Amps | Finite Gain

V./Vi Find an expression for the closed loop gain, G' assuming Aclided = -RZ/RI non-infinite open loop gain, A $v_{o} = A(v_{+} - v_{-})$ $\dot{v}_{i} = (v_{i} - v_{-}) = (v_{-} - v_{o})$ vo=A(0-v-) R_2 R, ι, $v_{-}=-\frac{v_{-}}{A}$ $\frac{3}{\sqrt{R_{l}}} \frac{R_{2}(v_{i}^{2} + \frac{v_{o}}{A})}{R_{l}} = -\frac{v_{o}\left(1 + \frac{1}{A}\right)}{\frac{1}{R_{l}}}$ $\frac{+}{v_{o}} \frac{R_{2}v_{i}^{2}}{R_{l}} = -\frac{v_{o}\left(1 + \frac{1}{A} + \frac{R_{l}}{R_{l}} - \frac{1}{A}\right)}{\frac{1}{R_{l}}}$ R_1 $\frac{v_0}{v_i} = \frac{(-R_2/R_1)}{1 + (R_2/R_1 + 1)}$ $a_3 A \rightarrow \infty$ $G \rightarrow - \frac{R_2}{R_1}$

Non-ideal Op Amps | Finite Gain


• Find an expression for the closed loop gain, G assuming non-infinite open loop gain, A $\vartheta_0 = (\upsilon_1 - \upsilon_2) A \longrightarrow \upsilon_0 = (\upsilon_1 - \upsilon_2) A$

Non-ideal Op Amps | Finite Gain

• If $R_1 = 1k\Omega$, $R_2 = 9k\Omega$, and $A = 10^3$, find the percent deviation from the ideal case

