Lecture 26 ### **ANNOUNCEMENTS** Homework 12 due Thursday, 12/6 ### **OUTLINE** - Self-biased current sources - BJT - MOSFET - Guest lecturer Prof. Niknejad ### **Review: Current Mirrors** • The current mirrors we discussed require a "golden" current source, I_{REF} , to copy. EE105 Fall 2007 Lecture 26, Slide 2 Prof. Liu, UC Berkeley ## Review: Current Mirrors (cont'd) - In lab 6 and lab 10, you used a resistor as your current source. - Q: What are some problems associated with this method? EE105 Fall 2007 Lecture 26, Slide 3 Prof. Liu, UC Berkeley ## Review: Current Mirrors (cont'd) • A: Variations in V_{CC} and temperature cause significant variations in I_{REF} . Consider the following analysis (ignoring base currents and the Early effect): V_{CC} $$I_{REF} = I_S e^{V_{BE}/V_T}$$ $V_{BE} = V_{CC} - I_{REF} R_{REF}$ $I_{REF} = I_S e^{(V_{CC} - I_{REF} R_{REF})/V_T}$ $V_{CC} = 5 \text{ V}, R_{REF} = 5 \text{ k}\Omega, I_S = 1 \text{ fA}$ $\Rightarrow I_{REF} = 857 \text{ }\mu\text{A}$ $V'_{CC} = 4.5 \text{ V}$ $\Rightarrow I'_{REF} = 758 \text{ }\mu\text{A}$ • Thus, a 10 % change in V_{CC} results in a 11.6 % change in I_{REF} . ## **Base-emitter Reference** - Rather than having a source dependent on V_{cc} , why not use some other reference? - For example, a V_{BE} referenced current source. - Ignoring base currents, we have: $$V_{BE1} = V_T \ln \frac{I_{IN}}{I_{S1}}$$ $$I_{OUT} = \frac{V_{BE1}}{R_2}$$ Q: Why is this less supply dependent? ## Base-emitter Reference (cont'd) - A: Although I_{IN} varies almost directly with V_{CC} , V_{BE1} won't vary nearly as much, since the device is exponential. Since I_{OUT} depends only on V_{BE1} , the output won't vary much with V_{CC} . - Example: $$V_{CC}=5~{ m V}, R_1=5~{ m k}\Omega, R_2=1~{ m k}\Omega, I_S=1~{ m fA}$$ $I_{IN}=857~{ m \mu A}, V_{BE1}=715~{ m mV}\Rightarrow I_{OUT}=715~{ m \mu A}$ $V_{CC}'=4.5~{ m V}$ $I_{IN}'=758~{ m \mu A}, V_{BE1}'=710~{ m mV}\Rightarrow I_{OUT}'=710~{ m \mu A}$ • Thus, a 10 % change in V_{CC} results in a 0.7 % change in I_{OUT} . ## **Self Biasing** • We can do better than the V_{BE} referenced source using feedback. What if our source had a current mirror attached that fed back the output current to act as the input current? # Self Biasing (cont'd) - Here, we've attached a *pnp* current mirror to force I_{OUT} and I_{IN} to match. - There are two stable operating points: $$-I_{IN} = I_{OUT} = 0 \text{ A}$$ Desired operating point ## **Start-up Circuit** - Need a way to "start-up" the circuit, like a car starter starts up your car. - Requirements: - Must keep the circuit out of the undesired operating point - Must not interfere with the circuit once it reaches the desired operating point EE105 Fall 2007 Lecture 26, Slide 9 Prof. Liu, UC Berkeley # Start-up Circuit (cont'd) # Start-up Circuit (cont'd) - Let's ensure this works: - Assume $I_{IN} = I_{OUT} = 0$. This means approximately that $V_{BE1} = V_{BE2} = 0$. However, note that the left side of D_1 is four diode drops from ground, meaning D_1 is on. This drops some voltage across R_x , forcing current to flow into T_1 and T_2 , starting up the circuit. - After the circuit is at the desired operating point, turn D_1 off by ensuring $R_x I_{IN}$ (the drop across R_x) is sufficiently large. ### **MOSFET Current Source** • We can build an analogous circuit from MOSFETs as well. Let's start with a V_{TH} referenced current source. $$I_{OUT} = \frac{V_{GS1}}{R_2}$$ $$= \frac{V_{TH} + V_{ov1}}{R_2}$$ $$= \frac{V_{TH} + \sqrt{\frac{2I_{IN}}{\mu_n C_{ox}(W/L)}}}{R_2}$$ • If we make V_{ov1} small (by sizing up T_1 or using small currents), I_{OUT} is controlled primarily by V_{TH} and R_2 . ## **MOSFET Current Source (cont'd)** • Let's add the current mirror feedback. ## **MOSFET Current Source (cont'd)** Finally, the start-up circuitry. It's more typical to use more MOSFETs in MOS technologies rather than diodes. EE105 Fall 2007 Lecture 26, Slide 14 Prof. Liu, UC Berkeley ## **MOSFET Current Source (cont'd)** - Assume $I_{IN} = I_{OUT} = 0$. This means $V_{GS1} = 0$, meaning T_8 is in triode. This turns on T_9 and forces current to flow into T_4 and T_5 . - Once in steady state, we can size T_7 to ensure that T_9 turns off. T_7 and T_8 don't directly affect the circuit themselves, so the start-up circuit has done its job. EE105 Fall 2007 Lecture 26, Slide 15 Prof. Liu, UC Berkeley ### References Material and figures largely from Analysis and Design of Analog Integrated Circuits, Fourth Edition by Gray, Hurst, Lewis, and Meyer. EE105 Fall 2007 Lecture 26, Slide 16 Prof. Liu, UC Berkeley ## Guest Lecturer: Prof. Ali Niknejad Faculty director of the Berkeley Wireless Research Center (BWRC). Primary research interests include analog integrated circuits, mm-wave CMOS, RF and microwave circuits, device modeling (BSIM), electromagnetics (ASITIC), communication systems, and scientific computing. EE105 Fall 2007 Lecture 26, Slide 17 Prof. Liu, UC Berkeley