Announcements

- Lab 9 reports due now!
 - Check your homework/lab grades next week!
- Reading: Chapter 9.6, 10.7.2
- Final: December 20, 12:30-3:30pm, Bechtel Aud. (Sibley)
Lecture Material

- Last lecture
 - BJT amplifiers: common emitter, common collector, common base
- This lecture
 - BJT biasing
 - Example amplifier
 - Review

PNP Transistor

![PNP Transistor Diagram]
Multi-Stage Voltage Amplifier

Cutting Through the Complexity

Two Approaches:

1. Eliminate “background” transistors to reduce clutter

2. Identify the “signal path” between the input and output
First Approach: Find I & V Sources

What’s Left?

Voltage at base of Q_2 is set by totem pole
Second Approach: Find Signal Path

First stage (or two stages): CS/CB cascode
Second stage (or two stages): CD/CC voltage buffer

Why does this make sense for a voltage amplifier?
Find Key Two-Port Parameters

Output resistance of cascode:

\[R_{out,CS/CB} = r_{oc} \parallel \left\{ r_{o2}(1 + g_{m2}(r_{\pi2} \parallel R_{S2})) \right\} \]

\[r_{oc} = R_{up} = r_{o6}(1 + g_{m6}R_{S6}) \]
Output Resistance and Voltage Gain

Source resistance of the CC stage is the output resistance of the CD stage (small)

\[R_{out} = R_{out,CC} = \frac{1}{g_{m4}} \frac{R_{S,CC}}{\beta_o} = \frac{1}{g_{m4}} \frac{1}{g_{m3} \beta_o} \approx \frac{1}{g_{m4}} \]

Open-circuit voltage gain \(A_v \) (last two stages have nearly unity gain):

\[A_v = -g_{m1} (\beta_0 r_0 \| r_0 (1 + g_m 6 r_0)) \]

Output Swing: \(V_{OUT,\text{MIN}} \)

Minimum output voltage: \(M_{10}, M_3, \) and \(Q_2 \) are “suspects”

- \(M_{10} \) goes into triode when \(V_{OUT} = 0.5 \text{ V} \)
- \(M_3 \) goes into triode when \(V_{SD3} = 0.5 \text{ V} \rightarrow V_{OUT} = 0.5 \text{ V} - 0.7 \text{ V} = -0.2 \text{ V} \)
- \(Q_2 \) goes into saturation when \(V_{CE2} = 0.1 \text{ V} \)
 - or \(V_{BC2} = 0.6 \text{ V} \)
 - \(V_{OUT} = V_{B2} - V_{BC2} + V_{SG3} - V_{BE4} = 2 \text{ V} - 0.6 \text{ V} + 1.5 \text{ V} - 0.7 \text{ V} \)
 - \(V_{OUT} = 2.2 \text{ V} \)
Output Swing: $V_{OUT,\text{MAX}}$

Maximum output voltage: Q_4, M_5, and M_6 are “suspects”

Q_4 goes into saturation when $V_{CE4} = 0.1 \text{ V} \rightarrow V_{OUT} = 4.9 \text{ V}$

M_5 goes triode when $V_{SD5} = 0.5 \text{ V} \rightarrow V_{OUT} = 3.8 \text{ V}$

M_6 goes triode when $V_{SD6} = 0.5 \text{ V} \rightarrow$

$V_{OUT} = V_{S6} - 0.5 \text{ V} + V_{SG3} - V_{BE4}$

$= 3.5 - 0.5 + 1.5 - 0.7 \text{ V} = 3.8 \text{ V}$

Insight into the Frequency Response
Qualitative Insight

Could always do “brute force” open-circuit time constants

CS*-CB is a wideband stage ... so is the CD-CC buffer

Look for large \(R_{Tx} C_x \) products: high-impedance nodes are likely candidates

Node X

“High impedance node” is node X ... look at \(R_{Tx} C_x \)

Capacitance:

\[C_x = C_{gd6} + C_{\mu 2} + C_{gd3} + C_{M3} \]

Miller for CD stage \((M_3)\)
Finding the Miller Capacitance C_{M3}

Gain across C_{gs3}:
$$A_{VCgs3} = \frac{R_{L3}}{1/g_{m3} + R_{L3}}$$

$$R_{L3} = R_{in4} =$$

Dominant Pole of Voltage Amplifier

Thévenin resistance for C_X:
$$R_{TX} = R_{out2} \parallel R_{in3} = R_{out, CB} \parallel R_{in, CD}$$

$$R_{TX} = r_{oc} \parallel r_{o2}(1 + g_{m2}(r_{\pi2} \parallel R_{S2})) \approx r_{o6}(1 + g_{m6}r_{o7}) \parallel r_{o2}\beta_0$$

Dominant pole:
$$\omega_1^{-1} \approx R_{TX}C_X$$
Example: Cell Phone