Announcements

- Homework 6 due next Tuesday
- Lab 4 this week
- Reading: Chapters 9.4, 8 (MOS only)
- Midterm 1 next week
 - October 13, 6:30-8pm, Sibley
- Review session on Tuesday
 - October 11, 6:30-8pm, 277 Cory
Lecture Material

- Last lecture
 - MOSFET small-signal model
- This lecture
 - MOS current sources
 - Generalized two-port models

Application of Current Mirrors:
Digital-to-Analog Converter

Digital input: word $D_0D_1D_2D_3$ → voltages are either V_{DD} or 0 V.
Transistors M_0, M_1, M_2, M_3 have binary-weighted (W/L) ratios
Example

Input word $D_0D_1D_2D_3 = 0101$

$I_{\text{REF}} = 100 \ \mu\text{A}$

$(W/L)_{\text{REF}} = (W/L)_0$
$(W/L)_1 = 2(W/L)_0$
$(W/L)_2 = 2(W/L)_1$
$(W/L)_3 = 2(W/L)_2$

Output voltage is $v_{\text{OUT}} = V_{\text{DD}} - R_L(i_{D0} + i_{D2})$

$= V_{\text{DD}} - R_L(I_{\text{REF}} + 4I_{\text{REF}})$

Sources of error: fab imprecision, channel-length modulation, ...

Generalized Amplifier

The diagram shows a generalized amplifier with input v_{in}, output v_o, bias voltage V_{BIAS}, and active device I_{DD}. The equations $i_D = f(v_{\text{in}})$ and $i_L = I_{\text{DD}} - i_D$ are also shown.
Amplifier Terminology

- **Sources**: Signal, its source resistance, and bias voltage or current
- **Load**: Use resistor/current source or in Chap. 8, but could be a general impedance
- **Port**: A pair of terminals across which a voltage and an associated current are defined

- Source, Load: “one port”
- Amplifier: “two port”

One-Port Models (EECS 40)

- A terminal pair across which a voltage and associated current are defined
We assume that input port is linear and that the amplifier is unilateral:

- Output depends on input but input is independent of output.
- Output port: depends linearly on the current and voltage at the input and output ports
- Unilateral assumption is good as long as “overlap” capacitance is small (MOS)
Math 54 Perspective

Can write linear system of equations for either i_{out} or v_{out} in terms of two of i_{in}, v_{in}, i_{out}, or v_{out}: possibilities are

\[
\begin{align*}
 i_{out} &= \alpha_1 v_{in} + \alpha_2 v_{out} \\
 i_{out} &= \alpha_3 i_{in} + \alpha_4 v_{out} \\
 v_{out} &= \alpha_5 v_{in} + \alpha_6 i_{out} \\
 v_{out} &= \alpha_7 i_{in} + \alpha_8 i_{out}
\end{align*}
\]

What is physical meaning of α_1? of α_6?

EE Perspective

- Four amplifier types: determined by the output signal and the input signal ... both of which we select (usually obvious)
 - Voltage Amp ($V \rightarrow V$)
 - Current Amp ($I \rightarrow I$)
 - Transconductance Amp ($V \rightarrow I$)
 - Transresistance Amp ($I \rightarrow V$)
- Need methods to find the 6 α parameters for the four models and equivalent circuits for unilateral two ports
Two-Port Small-Signal Amplifiers

Voltage Amplifier

Current Amplifier

Transconductance Amplifier

Transresistance Amplifier
Input Resistance R_{in}

Looks like a Thevenin resistance measurement, but note that the output port has the load resistance attached.

\[R_{in} = \left. \frac{v_t}{i_t} \right|_{R_S \text{removed}, \ R_L \text{attached}} \]

\[\text{Two-Port Amplifier} \]

Output Resistance R_{out}

Looks like a Thevenin resistance measurement, but note that the input port has the source resistance attached.

\[R_{out} = \left. \frac{v_t}{i_t} \right|_{R_L \text{removed}, \ R_S \text{attached}} \]

\[R_S \]

\[\text{Two-Port Amplifier} \]
Finding the Voltage Gain A_v

Key idea: the output port is open-circuited and the source resistance is shorted

$$A_v = \frac{v_{out}}{v_{in}} \bigg|_{R_S = 0, R_L \to \infty}$$

Finding the Current Gain A_i

Key idea: the output port is shorted and the source resistance is removed

$$A_i = \frac{i_{out}}{i_{in}} \bigg|_{R_S \to \infty, R_L = 0}$$
Finding the Transresistance R_m

$$R_m = \left. \frac{v_{out}}{i_{in}} \right|_{R_s \to \infty, R_L \to \infty}$$

Finding the Transconductance G_m

$$G_m = \left. \frac{i_{out}}{v_{in}} \right|_{R_s = 0, R_L = 0}$$
Common-Source Amplifier (again)

How to isolate DC level?

DC Bias

Neglect all AC signals

Choose I_{BIAS}, W/L
Load-Line Analysis to find Q

\[I_{R_D} = \frac{V_{DD} - V_{out}}{R_D} \]

\[I_D = \frac{5V}{10k} \]

\[V_{BIAS} \text{ (V)} \]

\[\text{slope} = \frac{1}{10k} \]

Small-Signal Analysis

\[R_{m} = \infty \]

\[+ v_{gs} \]

\[- \]

\[g_m v_{gs} \]

\[r_e \]
Two-Port Parameters:

Find R_{in}, R_{out}, G_m

R_s

Generic Transconductance Amp

$G_m = g_m$ $R_{out} = r_o \parallel R_D$

Two-Port CS Model

Reattach source and load one-ports: