Announcements

- Homework 5 due next Tuesday
- Lab 3 this week, Lab 4 next week
- Reading: Chapter 4 (4.5-4.6), 8.3
- Midterm 1 in two weeks
 - October 13, 6:30-8pm, Sibley

Lecture Material

- Last lecture
 - Sample and hold
 - MOS amplifier example
- This lecture
 - MOSFET small-signal model

There is a Better Way!

- What’s missing: didn’t include device output impedance or charge storage effects (must solve non-linear differential equations…)
- Approach 2. Do problem in two steps.
 - DC voltages and currents (ignore small signals sources): set bias point of the MOSFET … we had to do this to pick \(V_{GS} \) already
 - Substitute the small-signal model of the MOSFET and the small-signal models of the other circuit elements …
- This constitutes small-signal analysis

Large-Signal Analysis

An MOS Amplifier
Small-Signal Analysis

Step 1. Find DC Bias – ignore small-signal source

V_{GS} was found in Lecture 9

Step 2: Small-Signal Modeling

What are the small-signal models of the DC supplies?

Small-Signal Models of Ideal Supplies

Small-signal model:

\[V_s = \frac{\partial V_{app}}{\partial V_{app}} = \infty \]

\[r_{app} = 0 \]

\[G_{supply} = \frac{\partial I_{sup}}{\partial V_{sup}} = 0 \]

\[r_{app} = \infty \]

open

The Transconductance \(g_m \)

Defined as the change in drain current due to a change in the gate-source voltage, with everything else constant

\[g_m = \frac{-W}{L} \left(\frac{\partial I_D}{\partial V_{GS}} \right) \]

\[g_m = \frac{-W}{L} \left(\frac{\partial I_D}{\partial V_{GS}} \right) \]

Output Resistance \(r_o \)

Defined as the inverse of the change in drain current due to a change in the drain-source voltage, with everything else constant

\[r_o = \frac{-1}{\frac{\partial I_D}{\partial V_{DS}}} \]

Evaluating \(r_o \)

\[r_o = \frac{-1}{\frac{\partial I_D}{\partial V_{DS}}} \]
Total Small Signal Current

\[i_{ds}(t) = I_{bs} + i_{ds} \]
\[i_{ds} = g_m V_{gs} + \frac{1}{\lambda} V_{ds} \]

Transconductance
Conductance

Putting Together a Circuit Model

\[i_{ds} = g_m V_{gs} + \frac{1}{r_g} V_{ds} \]

MOS Amplifier

1: DC solution
\[I_D = 0.1mA \]
\[V_{GS} = 1.32V, \ V_{DS} = 2.5V \]

2: Small signal
\[g_m = \frac{2I_D}{V_{DS} - V_{TH}} = 0.82 \text{ms/V} \]
\[\lambda = \frac{1}{I_{DS}} \rightarrow \infty \]

MOS Amplifier: Small-Signal

\[V_{gs} = V_s \]
\[i_d = g_m V_{gs} \]
\[V_o = -i_d R_d \]
\[A_v = \frac{V_o}{V_s} = -g_m R_d \]
\[A_v = -15.6 \]

MOS Amplifier

Output resistance: typical value \(\lambda = 0.05 \text{ V}^{-1} \)
\[\lambda = \frac{1}{I_{DS}} = 200 \Omega \]

Voltage gain:
\[A_v = -\left(\frac{2 \cdot 0.1}{0.32} \right) (25 \parallel 200) = -14.3 \]

Output resistance lowers voltage gain

Input and Output Waveforms

Output small-signal voltage amplitude: 14 x 25 mV = 350
Input small-signal voltage amplitude: 25 mV
What Limits the Output Amplitude?

1. \(v_{OUT}(t) \) reaches \(V_{DD} \) or 0 \(\ldots \) or

2. MOSFET leaves constant-current region and enters triode region

\[
v_{csoe} = V_{DD}
v_{gsoe} = V_{gsoe, sat} = V_{gso} - V_{th} = 0.32V
v_{csoe} = V_{gsoe} - (V_{gso} - V_{th}) = 2.18V
\]

Optimum bias point \(V_o = \)

Role of the Substrate Potential

Need not be the source potential, but \(V_g < V_s \)
Lower substrate potential, increased voltage across depletion region – increased bulk charge

Effect: changes threshold voltage, which changes the drain current \(\ldots \) substrate acts like a “backgate”

\[
V_f = V_{gs} + \frac{r}{\sqrt{V_{ds}^2 - 2\phi_s - 2\phi_f}}
\]

Role of the Substrate Potential

Effect: Modulates threshold (acts as a weak “backgate”)

\[
g_{mh} = \frac{\Delta I_D}{\Delta V_{BS}} = \frac{\partial I_D}{\partial V_{BS}}|_Q
Q = (V_{gso}, V_{dso}, V_{bso})
\]

Result:

\[
g_m = -\frac{\partial V_{th}}{\partial V_{gs}} = -\frac{\partial V_{th}}{\partial V_{ds}} = -\frac{V_{th}}{2\sqrt{V_{ds}^2 - 2\phi_s}}
\]

Four-Terminal Small-Signal Model

\[
i_{ds} = g_m v_{gs} + g_{mh} v_{hs} + \frac{1}{r_o} v_{ds}
\]

MOSFET Capacitances in Saturation

Gate-source capacitance: channel charge is not controlled by drain in saturation.

\[
C_{gs} = (2/3)WL C_{ox} + C_{ov}
\]

Wedge-shaped charge in saturation \(\rightarrow \) effective area is \((2/3)WL \)
(see H&S 4.5.4 for details)

\[
C_{ov} = L_D W C_{ox}
\]

Underestimate due to fringing fields
Gate-Drain Capacitance \(C_{gd} \)

Not due to change in inversion charge in channel

Overlap capacitance \(C_{ov} \) between drain and source is \(C_{gd} \)

Junction Capacitances

Drain and source diffusions have (different) junction capacitances since \(V_{SB} \) and \(V_{DS} = V_{SB} + V_{DS} \) aren’t the same

Complete model (without interconnects)

P-Channel MOSFET

Measurement of \(I_{DS} \) versus \(V_{SD} \) with \(V_{SG} \) as a parameter:

Square-Law PMOS Characteristics

Small-Signal PMOS Model

Many "levels" ... we will use the square-law "Level 1" model

See H&S 4.6 + Spice refs. on reserve for details.

MOSFET SPICE Model

MODEL BODY PMOS LEVEL = 1 VTO = 1 KP = 100 LAMBDA = 0.3 GAMMA = 6
+ PHI = 0.3 TOX = 1.5E-11 OXDO = 5E-10 OXCO = 5E-10 CI = 3E-4 CI2W = 3E-10
+ MJ = 0.5 PBJ = 0.5

MODEL MOD PPMOS LEVEL = 1 VTO = 0.1 KP = 250 LAMBDA = 433 GAMMA = 6
+ PHI = 0.3 TOX = 1.5E-11 OXDO = 5E-10 OXCO = 5E-10 CI = 3E-4 CI2W = 3E-10
+ MJ = 0.5 PBJ = 0.5