Lecture Outline

- Review: MOS Capacitors Regions
- MOS Capacitors (3.8 – 3.9)
 - CV Curve
 - Threshold Voltage
- MOS Transistors (4.1 – 4.3):
 - Overview
 - Cross-section and layout
 - I-V Curve
MOS Capacitor

- MOS = Metal Oxide Silicon
- Sandwich of conductors separated by an insulator
- “Metal” is more commonly a heavily doped polysilicon layer n⁺ or p⁺ layer
- NMOS \rightarrow p-type substrate, PMOS \rightarrow n-type substrate

\[
\varepsilon_s = 11.7\varepsilon_0
\]

Oxide (SiO₂)

$\varepsilon_{ox} = 3.9\varepsilon_0$

Very Thin!

$t_{ox} \sim 1\text{nm}$

\[
\varepsilon = \varepsilon_{\text{ox}} + \varepsilon_s
\]
Accumulation: $V_{GB} < V_{FB}$

- Essentially a parallel plate capacitor
- Capacitance is determined by oxide thickness:

$$Q_G = C_{ox} (V_{GB} - V_{FB})$$

$$Q_B = |Q_G|$$

Body (p-type substrate)
Depletion: $V_{FB} < V_{GB} < V_T$

- Positive charge on gate terminates on negative charges in depletion region
- Potential drop across the oxide and depletion region
- Charge has a square-root dependence on applied bias

$Q_G(V_{GB}) = -Q_B$

$Q_B = -qN_a X_d(V_{GB})$

$V_{GB} > V_{FB}$
Inversion

- The surface potential increases to a point where the electron density at the surface equals the background ion density.
- At this point, the depletion region stops growing and the extra charge is provided by the inversion charge at surface.

\[
\phi_s = \frac{q\phi_s}{kT} = N_a
\]
Threshold Voltage

- The threshold voltage is defined as the gate-body voltage that causes the surface to change from p-type to n-type.
- For this condition, the surface potential has to equal the negative of the p-type potential.
- Apply KCL around loop:

\[
V_{GS} = V_{FB} + V_{ox} + V_{BS}
\]

\[
\phi_s = V_{BS} = -2\phi_p
\]

\[
V_{ox} = E_{ox} t_{ox} = \frac{\varepsilon_s}{\varepsilon_{ox}} t_{ox} E_s
\]

\[
E_s = \frac{qN_a x_{dep}}{\varepsilon_s} = \frac{qN_a}{\varepsilon_s} \sqrt{2\varepsilon_s \phi_s} = \frac{\sqrt{2qN_a (-2\phi_p)}}{\varepsilon_s}
\]

\[
V_{Tn} = V_{FB} - 2\phi_p + \frac{1}{C_{ox}} \sqrt{2q\varepsilon_s N_a (-2\phi_p)}
\]
Inversion Stops Depletion

- A simple approximation is to assume that once inversion happens, the depletion region stops growing.
- This is a good assumption since the inversion charge is an exponential function of the surface potential.
- Under this condition:

\[Q_G(V_{Tn}) \approx -Q_{B,max} \]

\[Q_G(V_{GB}) = C_{ox} (V_{GB} - V_{Tn}) - Q_{B,max} \]
In accumulation, the charge is simply proportional to the applies gate-body bias.

In inversion, the same is true.

In depletion, the charge grows slower since the voltage is applied over a depletion region.
Numerical Example

• MOS Capacitor with p-type substrate:
 \[t_{ox} = 20\text{nm} \quad N_a = 5 \times 10^{16} \text{ cm}^{-3} \]

• Calculate flat-band:
 \[V_{FB} = -(\phi_{n^+} - \phi_p) = -(550 - (-402)) = -0.95\text{V} \]

• Calculate threshold voltage:
 \[C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = \frac{3.45 \times 10^{-13} \text{ F/cm}}{2 \times 10^{-6} \text{ cm}} \]
 \[V_{Tn} = V_{FB} - 2\phi_p + \frac{1}{C_{ox}} \sqrt{2q\varepsilon_s N_a (-2\phi_p)} \]
 \[V_{Tn} = -0.95 - 2(-0.4) + \frac{\sqrt{2 \times 1.6 \times 10^{-19} \times 1.04 \times 10^{-12} \times 5 \times 10^{16} \times 2 \times 0.4}}{C_{ox}} = 0.52\text{V} \]
Num Example: Electric Field in Oxide

- Apply a gate-to-body voltage:
 \[V_{GB} = -2.5 < V_{FB} \]

- Device is in accumulation
- The entire voltage drop is across the oxide:
 \[
 E_{ox} = \frac{V_{ox}}{t_{ox}} = \frac{V_{GB} + \phi_n^+ - \phi_p}{t_{ox}} = \frac{-2.5 + 0.55 - (-0.4)}{2 \times 10^{-6}} = -8 \times 10^5 \frac{V}{cm}
 \]

- The charge in the substrate (body) consist of holes:
 \[
 Q_B = -C_{ox} (V_{GB} - V_{FB}) = 2.67 \times 10^{-7} \text{C/cm}^2
 \]
Numerical Example: Depletion Region

- In inversion, what’s the depletion region width and charge?

\[V_{B,\text{max}} = \phi_s - \phi_p = -\phi_p - \phi_p = -2\phi_p = 0.8 \text{V} \]

\[V_{B,\text{max}} = \frac{1}{2} \left(\frac{qN_a}{\varepsilon_s} \right) X_{d,\text{max}}^2 \]

\[X_{d,\text{max}} = \sqrt{\frac{2\varepsilon_s V_{B,\text{max}}}{qN_a}} = 144 \text{nm} \]

\[Q_{B,\text{max}} = -qN_a X_{d,\text{max}} = -1.15 \times 10^{-7} \text{C/cm}^2 \]
MOS CV Curve

- Small-signal capacitance is slope of Q-V curve
- Capacitance is linear in accumulation and inversion
- Capacitance is depletion region is smallest
- Capacitance is non-linear in depletion
C-V Curve Equivalent Circuits

- In accumulation mode the capacitance is just due to the voltage drop across t_{ox}.
- In inversion the incremental charge comes from the inversion layer (depletion region stops growing).
- In depletion region, the voltage drop is across the oxide and the depletion region.
MOSFET Cross Section

- Add two junctions around MOS capacitor
- The regions forms PN junctions with substrate
- MOSFET is a four terminal device
- The body is usually grounded (or at a DC potential)
- For ICs, the body contact is at surface
Planar process: complete structure can be specified by a 2D layout

Design engineer can control the transistor width W and L

Process engineer controls t_{ox}, N_a, x_j, etc.
PMOS & NMOS

- A MOSFET by any other name is still a MOSFET:
 - NMOS, PMOS, nMOS, pMOS
 - NFET, PFET
 - IGFET
 - Other flavors: JFET, MESFET

- CMOS technology: The ability to fabricated NMOS and PMOS devices simultaneously
Complementary MOS: Both P and N type devices
Create a n-type body in a p-type substrate through compensation. This new region is called a “well”.
To isolate the PMOS from the NMOS, the well must be reverse biased (pn junction)
Circuit Symbols

- The symbols with the arrows are typically used in analog applications.
- The body contact is often not shown.
- The source/drain can switch depending on how the device is biased (the device has inherent symmetry).
Observed Behavior: $I_D - V_{GS}$

- Current zero for negative gate voltage
- Current in transistor is very low until the gate voltage crosses the threshold voltage of device (same threshold voltage as MOS capacitor)
- Current increases rapidly at first and then it finally reaches a point where it simply increases linearly
Observed Behavior: \(I_D - V_{DS} \)

- For low values of drain voltage, the device is like a resistor.
- As the voltage increases, the resistance behaves non-linearly and the rate of increase of current slows.
- Eventually the current stops growing and remains essentially constant (current source).
“Linear” Region Current

- If the gate is biased above threshold, the surface is inverted.
- This inverted region forms a channel that connects the drain and gate.
- If a drain voltage is applied positive, electrons will flow from source to drain.
MOSFET “Linear” Region

- The current in this channel is given by
 \[I_{DS} = -W \nu_y Q_N \]

- The charge proportional to the voltage applied across the oxide over threshold
 \[Q_N = C_{ox} (V_{GS} - V_{Tn}) \]
 \[I_{DS} = -W \nu_y C_{ox} (V_{GS} - V_{Tn}) \]

- If the channel is uniform density, only drift current flows
 \[\nu_y = -\mu_n E_y \quad E_y = -\frac{V_{DS}}{L} \]
 \[I_{DS} = \frac{W}{L} \mu_n C_{ox} (V_{GS} - V_{Tn}) V_{DS} \quad V_{GS} > V_{Tn} \quad V_{DS} \approx 100\text{mV} \]
MOSFET: Variable Resistor

- Notice that in the linear region, the current is proportional to the voltage

\[I_{DS} = \frac{W}{L} \mu_n C_{ox} (V_{GS} - V_{Tn}) V_{DS} \]

- Can define a voltage-dependent resistor

\[R_{eq} = \frac{V_{DS}}{I_{DS}} = \frac{1}{\mu_n C_{ox} (V_{GS} - V_{Tn})} \left(\frac{L}{W} \right) = R_{\square}(V_{GS}) \frac{L}{W} \]

- This is a nice variable resistor, electronically tunable!