Microelectronic Devices and Circuits- EECS105

Second Midterm Exam

Wendesday, November 17, 1999

Costas J. Spanos

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences

	(last)	(first)	
Your Signature:			

- 1. Print and sign your name on this page before you start.
- 2. You are allowed two 8.5"x11" handwritten sheets with formulas. No books or notes!
- 3. Do everything on this exam, and make your methods as clear as possible.

 Problem 1 ______/30

 Problem 2 ______/35

 Problem 3 ______/35

TOTAL _____/100

Problem 1 of 3 Answer	r each question	briefly and	clearly. (30) points)
-----------------------	-----------------	-------------	--------------	-----------

How does the small signal output resistance of a BJT depend on its size (emitter-to-base junction area), when V_{BE} is held constant? (6pts)

Why is it desirable to have $V_{BS} = 0V$ in MOS Common Gate applications? (6pts)

What happens to the overall (loaded) |Av| when Ic increases in a CE amplifier? (Assume that R_L is initially equal to ro, $Rs << r_{\pi}$ and $r_{oc} = infinity$)(6 pts)

How many poles and how many zeros does this circuit have? What is its function, assuming that $R_1C_1 << R_2C_2$? (6pts)

Problem 2 of 3 (35 points)

For each of the following questions, make sure that you show the expressions <u>before</u> you plug in the specific values. A correct expression is worth 70% of the credit, even if the numerical calculation is incorrect!

You are given the following nmos common drain amplifier.

a) Assume V_{bs} =0v, and find V_{bias} so that I_{sup} = 500 μ A. (12pts)

b) Calculate the overall (loaded) voltage gain, with $V_{bs}=0V$. (10pts)

c) You are now going to design the biasing circuit for this amplifier. Assuming that the size of M_4 is the same as M_1 (100/2), size the biasing transistors M_2 , M_3 , and resistor R in order to get the proper supply current through the common drain amplifier transistor M_1 . Note that the voltage at the drains of M_3 and M_2 is 0V. (13pts)

Problem 3 of 3 (35 points)

For each of the following questions, make sure that you show the expressions <u>before</u> you plug in the specific values. A correct expression is worth 70% of the credit, even if the numerical calculation is incorrect!

You are given the following p-channel common-source amplifier.

a) Draw the small signal model of the amplifier. Make sure that you include the entire small signal model of the CS amplifier transistor M_1 , along with all the relevant capacitances, including r_{o2} , C_{db2} and C_{gd2} from the current sink transistor M_2 . (10 points)

b) Apply the Miller approximation (ignore all capacitances when calculating the Miller gain), and derive a <u>symbolic</u> expression for the complete transfer function (hint: this function has two poles and no zeros) (7 points).

c) Calculate the dc gain and the values of the two poles, given that C_{gs1} =78fF, C_{gd1} =25fF, C_{gd2} =25fF, C_{db1} =90fF, C_{db2} =30fF (8 points)

d) Draw the Bode plot for amplitude and phase of the gain of this amplifier (10 points).

