Microelectronic Devices and Circuits- EECS105

Second Midterm Exam

Wendesday, November 17, 1999

Costas J. Spanos
University of California at Berkeley
College of Engineering
Department of Electrical Engineering and Computer Sciences

Your Name: \qquad
Your Signature: \qquad

1. Print and sign your name on this page before you start.
2. You are allowed two 8.5 "xll" handwritten sheets with formulas. No books or notes!
3. Do everything on this exam, and make your methods as clear as possible.

$$
\begin{aligned}
& \text { Problem 1 } \quad 130 \\
& \text { Problem 2 } \quad 135 \\
& \text { Problem 3 } \\
& \\
& \text { TOTAL }
\end{aligned}
$$

Problem 1 of 3 Answer each question briefly and clearly. ($\mathbf{3 0}$ points)

Explain briefly why BJT performance depends so much on the diffusivity of minority carriers (6pts)

How does the small signal output resistance of a BJT depend on its size (emitter-to-base junction area), when Vbe is held constant? (6pts)

Why is it desirable to have $\mathrm{V}_{\mathrm{BS}}=0 \mathrm{~V}$ in MOS Common Gate applications? (6pts)

What happens to the overall (loaded) $|\mathrm{Av}|$ when Ic increases in a CE amplifier? (Assume that R_{L} is initially equal to mo, $\mathrm{Rs} \ll \mathrm{r}_{\pi}$ and $\mathrm{r}_{\mathrm{oc}}=$ infinity $)(6 \mathrm{pts})$

How many poles and how many zeros does this circuit have? What is its function, assuming that $\mathrm{R}_{1} \mathrm{C}_{1} \ll \mathrm{R}_{2} \mathrm{C}_{2}$? (6pts)

Problem 2 of 3 (35 points)

For each of the following questions, make sure that you show the expressions before you plug in the specific values. A correct expression is worth 70% of the credit, even if the numerical calculation is incorrect!
You are given the following nmos common drain amplifier.

$$
\begin{aligned}
& \mathrm{W} / \mathrm{L}=100 / 2 \\
& \mathrm{~V}_{\mathrm{Tn}}=0.7 \mathrm{~V} \\
& \mu \mathrm{nCox}=50 \mu \mathrm{~A} / \mathrm{V}^{2} \\
& \lambda_{\mathrm{n}}=0.05 \mathrm{~V}^{-1} \text { (for } \mathrm{L}=2 \mu \mathrm{~m} \\
& \mathrm{r}_{\mathrm{oc}}=\mathrm{r}_{\mathrm{o}} \\
& \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}
\end{aligned}
$$

a) Assume $V_{b s}=0 v$, and find $V_{\text {bias }}$ so that $I_{\text {sup }}=500 \mu \mathrm{~A}$. (12pts)
b) Calculate the overall (loaded) voltage gain, with $\mathrm{V}_{\mathrm{bs}}=0 \mathrm{~V}$. (10pts)
c) You are now going to design the biasing circuit for this amplifier. Assuming that the size of M_{4} is the same as $\mathrm{M}_{1}(100 / 2)$, size the biasing transistors $\mathrm{M}_{2}, \mathrm{M}_{3}$, and resistor R in order to get the proper supply current through the common drain amplifier transistor M_{1}. Note that the voltage at the drains of M_{3} and M_{2} is 0 V . (1 3pts)

Problem 3 of 3 (35 points)

For each of the following questions, make sure that you show the expressions before you plug in the specific values. A correct expression is worth 70% of the credit, even if the numerical calculation is incorrect!
You are given the following p-channel common-source amplifier.

$$
\begin{aligned}
& \mathrm{W} / \mathrm{L}=100 / 2 \\
& \mathrm{~V}_{\mathrm{Tn}}=0.7 \mathrm{~V} \\
& \mu \mathrm{nCox}=50 \mu \mathrm{~A} / \mathrm{V}^{2} \\
& \lambda_{\mathrm{n}}=0.05 \mathrm{~V}^{-1}(\text { for } \mathrm{L}=2 \mu \mathrm{~m}) \\
& \mathrm{r}_{\mathrm{oc}}=\mathrm{r}_{\mathrm{o}} \\
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\
& \mathrm{R}_{\mathrm{s}}=200 \mathrm{~K} \Omega
\end{aligned}
$$

a) Draw the small signal model of the amplifier. Make sure that you include the entire small signal model of the CS amplifier transistor M_{1}, along with all the relevant capacitances, including $\mathrm{r}_{\mathrm{o} 2}, \mathrm{C}_{\mathrm{db} 2}$ and $\mathrm{C}_{\mathrm{gd} 2}$ from the current sink transistor M_{2}. (10 points)
b) Apply the Miller approximation (ignore all capacitances when calculating the Miller gain), and derive a symbolic expression for the complete transfer function (hint: this function has two poles and no zeros) (7 points).
c) Calculate the dc gain and the values of the two poles, given that $\mathrm{C}_{\mathrm{gs} 1}=78 \mathrm{fF}, \mathrm{C}_{\mathrm{gd} 1}=25 \mathrm{fF}$, $\mathrm{C}_{\mathrm{gd} 2}=25 \mathrm{fF}, \mathrm{C}_{\mathrm{db} 1}=90 \mathrm{fF}, \mathrm{C}_{\mathrm{db} 2}=30 \mathrm{fF}$ (8 points)
d) Draw the Bode plot for amplitude and phase of the gain of this amplifier (10 points).

