Two-Stage BiCMOS Transconductance Amplifier

* Concept: cascade two common-emitter stages to get more transconductance -- **not** an ideal solution but illustrates DC biasing and interstage coupling

* DC Issues:

First stage: npn common-emitter amplifier (DC level shifts up)

Second stage: pnp common-emitter amplifier (DC level shifts down)

Amplifier Topology

* Basic structure -- connect output of CE (npn) to input of CE (pnp), attach small-signal voltage input (with R_S) and load (R_L)

* Current source design:

assume that the reference current is generated by a resistor (to ground)

DC Currents from Reference

* p-channel diode-connected M_3 is used to generate source-gate voltages for M_4 (which generates i_{SUP1}) and for M_5 . The second current supply is generated by first using $-I_{D5}$ to generate a DC gate-source voltage via diode-connected M_7 .

Two-Stage BiCMOS Transconductance Amplifier

* Combine current source circuit with basic amplifier topology

DC Bias of Transconductance Amplifier

- * Given: $V_{OUT} = 0 \text{ V (DC)}$; $V^{+} = 2.5 \text{ V}$, $V^{-} = -2.5 \text{ V}$; $R_{S} = R_{L} = 50 \text{ k}\Omega$
- * Standard simplifications: assume $I_B = 0$ for bipolar transistors, neglect Early effect (BJT) and channel-length modulation (MOSFETs) for hand calculations

* *Device Properties*: (for simplicity, make all n-channel and all p-channel MOSFETs the same dimensions)

MOSFETs:
$$\mu_n C_{ox} = 50 \ \mu \text{AV}^{-2}$$
, $(W/L)_n = (50/2)$, $V_{Tn} = 1 \ \text{V}$, $\lambda_n = 0.05 \ \text{V}^{-1}$
 $\mu_p C_{ox} = 25 \ \mu \text{AV}^{-2}$, $(W/L)_p = (80/2)$, $V_{Tp} = -1 \ \text{V}$, $\lambda_p = 0.05 \ \text{V}^{-1}$
BJTs: $\beta_{on} = 100$, $V_{An} = 50 \ \text{V}$, $\beta_{op} = 50$, $V_{Ap} = 25 \ \text{V}$

Reference Resistor

* Find R_{REF} such that $I_{REF} = 50 \,\mu\text{A}$ and then find all node voltages and DC bias currents ...

* Substituting $I_{REF} = -I_{D3} = 50 \mu A$, the source-gate voltage drop is

$$V_{SG3} = -(-1 \text{ V}) + \sqrt{\frac{50 \text{ } \mu\text{A}}{\left(\frac{80}{(2(2))}\right)(25 \text{ } \mu\text{A/V}^2)}} = 1.32 \text{ V}$$

* Solve for the reference resistor:

$$R_{REF} = \frac{(V_{DD} - V_{SS}) - V_{SG3}}{I_{REF}} = \frac{2.5 \text{ V} - (-2.5 \text{ V}) - 1.32 \text{ V}}{50 \text{ } \mu\text{A}} = 73.6 \text{ k}\Omega$$

DC Operating Point

* Since width-to-length ratios are identical for n-channel and p-channel devices (separately), the DC supply currents are equal to the reference current

* Neglecting base currents, $I_{C1} = 50 \,\mu\text{A}$ and $I_{C2} = 50 \,\mu\text{A}$

$$Q_1$$
: $g_{m1} = 2$ mS, $r_{\pi 1} = 50$ k Ω , $r_{o1} = 1$ M Ω

$$Q_2$$
: $g_{m2} = 2$ mS, $r_{\pi 2} = 25$ k Ω , $r_{o2} = 500$ k Ω

Source resistances of the current supplies for first and second stages:

$$r_{oc1} = r_{o4} = (\lambda_4(-I_{D4}))^{-1} = (0.05(0.05))^{-1} = 400 \text{ k}\Omega$$

$$r_{oc2} = r_{o6} = (\lambda_6(I_{D6}))^{-1} = (0.05(0.05))^{-1} = 400 \text{ k}\Omega$$

Overall Two-Port Model

- * $R_{in} = R_{in1} = 50 \text{ k}\Omega$ and $R_{out} = R_{out2} = r_{o2} \parallel r_{oc2} = 500 \text{ k}\Omega \parallel 400 \text{ k}\Omega = 220 \text{ k}\Omega$
- * Overall short-circuit transconductance G_m -- apply standard procedure

Find input voltage to the second stage:

$$v_{in2} = - \ G_{m1}(\ R_{out1} \parallel R_{in2}\)\ v_{in} = - \ g_{m1}\ (\ r_{o1} \parallel r_{oc1} \parallel r_{\pi\,2}\)\ v_{in}$$

Output current

$$i_{out} = G_{m2} v_{in2} = g_{m2} [-g_{m1} (r_{o1} || r_{oc1} || r_{\pi 2})] v_{in}$$

* Overall transconductance:

$$G_m = i_{out} / v_{in} = -g_{m2} g_{m1} (r_{o1} \parallel r_{oc1} \parallel r_{\pi 2})$$

$$G_m = -(2 \text{ mS})(2 \text{ mS})(1 \text{ M}\Omega \parallel 400 \text{ k}\Omega \parallel 25 \text{ k}\Omega) = -(2 \text{ mS})(2 \text{ mS})(23 \text{ k}\Omega)$$

$$G_m = -92 \text{ mS}$$

Output Voltage Swing

* Find the maximum and minimum values of v_{OUT}

* Determine how high the output node can rise before a device leaves its constantcurrent region

$$Q_2$$
 saturates when $v_{OUT} = V_{OUT(max)} = 2.4 \text{ V}$... $V_{EC(sat)} = 0.1 \text{ V}$
Note that M_4 is still saturated since $V_{SD4} = V_{EB4} = 0.7 \text{ V} > v_{SG4} + V_{Tp} = 0.22 \text{ V}$

* Determine how low the output node can drop ...

$$M_6$$
 goes triode when $V_{DS6} = V_{DS6(sat)} = V_{GS6} - V_{Tn} = 1.32 \text{ V} - 1 \text{ V} = 0.32 \text{ V}$
 $V_{OUT(min)} = -2.5 \text{ V} + 0.32 \text{ V} = 2.18 \text{ V}$