Magnitude Bode Plot for the Low Pass Filter

- Transfer function is

$$
\frac{V_{o u t}}{V_{i n}}=\frac{1}{1+j \omega R C}
$$

"The magnitude of the ratio is the ratio of the magnitudes:"

$$
\left|\frac{V_{o u t}}{V_{\text {in }}}\right|_{d B}=20 \log \left|\frac{1}{1+j \omega R C}\right|=20 \log \left(\frac{1}{\sqrt{1+\left(\omega / \omega_{o}\right)^{2}}}\right)
$$

- $\omega_{0}=1 / R C$ is the "break frequency" or " -3 dB frequency"
$\omega \ll \omega_{0}$ results in a magnitude of $20 \log (1 / 1)=0 \mathrm{~dB}$
$\omega \gg \omega_{0}$ results in a magnitude of

$$
\left|\frac{V_{o u t}}{V_{i n}}\right|_{d B}=20 \log \left(\frac{1}{\sqrt{1+\left(\omega / \omega_{o}\right)^{2}}}\right) \cong 20 \log \left(\frac{1}{\left(\omega / \omega_{o}\right)}\right)=-20 \log \left(\frac{\omega}{\omega_{o}}\right)
$$

- substitute $\omega=10 \omega_{0}, 100 \omega_{0}, 1000 \omega_{0}$

Approximate Magnitude Bode Plot

- Sketch asymtotes above and below the break frequency

At $\omega=\omega_{0}$, the exact magnitude is:

$$
\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right|_{d B}=20 \log \left|\frac{1}{1+j\left(\omega_{o} / \omega_{o}\right)}\right|=20 \log \left[\frac{1}{\sqrt{1+1}}\right]=-3 d B
$$

Phase Bode Plot for Low Pass Filter

- From the definition of the phase,
$\angle \frac{V_{\text {out }}}{V_{\text {in }}}=\angle\left(\frac{1}{1+j \omega R C}\right)=\angle 1-\angle\left(1+j\left(\omega / \omega_{o}\right)\right)=-\angle\left(1+j\left(\omega / \omega_{o}\right)\right)$
- Substituting the arctangent,

$$
\angle \frac{V_{\text {out }}}{V_{\text {in }}}=-\operatorname{atan}\left(\omega / \omega_{o}\right)
$$

- Look at asymtotes, again:
$\omega \ll \omega_{0}$ results in a phase of $-\tan (0)=0$
$\omega \gg \omega_{0}$ results in a phase of $-\operatorname{atan}($ infinity $)=-90^{\circ}$
$\omega=(1 / 10) \omega_{0}$ results in a phase of $-\operatorname{atan}(0.1)=-6^{\circ}$
$\omega=(10) \omega_{0}$ results in a phase of $-\operatorname{atan}(10)=-84^{\circ}$
$\omega=\omega_{0}$ results in a phase of $-\operatorname{atan}(1)=-45^{\circ}$

Finding the Output Waveform from the Bode Plot

- Suppose that $v_{i n}(t)=100 \mathrm{mV} \cos \left(\omega_{0} t+0^{\circ}\right)$
note that the input signal frequency is equal to the break frequency and that the phase is $0^{\circ} \ldots$ the input signal phase is arbitrary and is generally selected to be 0 . the output phasor is:

$$
V_{\text {out }}=V_{\text {in }}\left[\frac{1}{1+j\left(\omega_{o} / \omega_{o}\right)}\right]=V_{\text {in }}\left[\frac{1}{1+j}\right]
$$

magnitude:

$$
\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right|_{d B}=-3 \mathrm{~dB} \quad \ldots \quad\left|V_{\text {out }}\right|=\frac{\left|V_{\text {in }}\right|}{\sqrt{2}}=\frac{100 \mathrm{mV}}{\sqrt{2}}=71 \mathrm{mV}
$$

phase:

$$
\begin{gathered}
\angle \frac{V_{\text {out }}}{V_{\text {in }}}=\angle 1-\angle(1+j)=0-45^{\circ} \quad \angle V_{\text {out }}=-45^{\circ} \\
V_{\text {out }}=(71 \mathrm{mV}) e^{-j 45^{\circ}}
\end{gathered}
$$

output waveform $v_{\text {out }}(t)$ is given by:

$$
\begin{gathered}
v_{\text {out }}(t)=\operatorname{Re}\left(V_{\text {out }} e^{j \omega_{o} t}\right)=\operatorname{Re}\left(71 \mathrm{mV} e^{-j 45^{\circ}} e^{j \omega_{o} t}\right) \\
v_{\text {out }}(t)=71 \mathrm{mV} \cos \left(\omega_{o} t-45^{o}\right)
\end{gathered}
$$

Bode Plots of General Transfer Functions

- Procedure is to identify standard forms in the transfer functions, apply asymptotic techniques to sketch each form, and then combine the sketches graphically

$$
H(j \omega)=\frac{A j \omega\left(1+j \omega \tau_{2}\right)\left(1+j \omega \tau_{4 .}\right) \ldots\left(1+j \omega \tau_{n}\right)}{\left(1+j \omega \tau_{1}\right)\left(1+j \omega \tau_{3}\right) \ldots\left(1+j \omega \tau_{n-1}\right)}
$$

where the τ_{i} are time constants -- $\left(1 / \tau_{i}\right)$ are the break frequencies, which are called poles when in the denominator and zeroes when in the numerator

- From complex algebra, the factors can be dealt with separately in the magnitude and in the phase and the results added $u p$ to find $|H(j \omega)|$ and phase $(H(j \omega))$

Three types of factors:

1. poles (binomial factors in the denominator)
2. zeroes (binomial factors in the numerator)
3. $j \omega$ in the numerator (or denominator)
(note: we aren't going to consider complex poles)

Rapid Sketching of Bode Plots

- Poles: -3 dB and -45° at break frequency

0 dB below and $-20 \mathrm{~dB} /$ decade above
0° for low frequencies and -90° for high frequencies; width of transition is between 10 and (1/10) break frequency

- Zeros: +3 dB and $+45^{\circ}$ at break frequency

0 dB below and $+20 \mathrm{~dB} /$ decade above
0° for low frequencies and $+90^{\circ}$ for high frequencies; width of transition is between 10 and (1/10) break frequency

- $j \omega:+20 \mathrm{~dB} /$ decade $(0 \mathrm{~dB}$ at $\omega=1 \mathrm{rad} / \mathrm{s})$ and $+90^{\circ}$ contribution to phase

Example I:

Device Models and Frequency Response

- "Classic" cases: give insight into the connection between device model and frequency response

1. CE short-circuit current gain $A_{i}(j \omega)$ as a function of frequency

Kirchhoff's current law at the output node

$$
I_{o}=g_{m} V_{\pi}-V_{\pi} j \omega C_{\mu}
$$

Kirchhoff's current law at the input node:

$$
I_{s}=\frac{V_{\pi}}{Z_{\pi}}+V_{\pi} j \omega C_{\mu} \quad \text { where } \quad Z_{\pi}=r_{\pi} \|\left(\frac{1}{j \omega C_{\pi}}\right)
$$

- Solving for V_{π} at the input node:

$$
V_{\pi}=\frac{I_{s}}{\left(1 / Z_{\pi}\right)+j \omega C_{\mu}}
$$

Short-Circuit Gain Frequency Response

- Substituting V_{π} into the output node equation--

$$
\frac{I_{o}}{I_{s}}=\frac{g_{m} Z_{\pi}\left(1-\frac{j \omega C_{\mu}}{g_{m}}\right)}{1+j \omega C_{\mu} Z_{\pi}}
$$

- Substituting for Z_{π} and simplifying --

$$
\frac{I_{o}}{I_{s}}=\frac{g_{m} r^{\prime}\left(1-\frac{j \omega C_{\mu}}{g_{m}}\right)}{1+j \omega r_{\pi}\left(C_{\pi}+C_{\mu}\right)}=\frac{\beta_{o}\left(1-\frac{j \omega C_{\mu}}{g_{m}}\right)}{1+j \omega r_{\pi}\left(C_{\pi}+C_{\mu}\right)}=\beta_{o}\left[\frac{1-j \frac{\omega}{\omega_{z}}}{1+j \frac{\omega}{\omega_{p}}}\right]
$$

Current gain has one pole:

$$
\omega_{p}=\left(r_{\pi}\left(C_{\pi}+C_{\mu}\right)\right)^{-1}
$$

and one zero

$$
\omega_{z}=\left(g_{m}^{-1} C_{\mu}\right)^{-1} » \omega_{p}
$$

Bode Plot of Short-Circuit Current Gain

- Note low frequency magnitude of gain is β_{o}

Phase Plot

- Frequency at which current gain is reduced to 0 dB is defined as the transition frequency ω_{T}. Neglecting the zero,

$$
\omega_{T}=\frac{g_{m}}{\left(C_{\pi}+C_{\mu}\right)}
$$

Transition Frequency of the Bipolar Transistor

- Dependence of transition time $\tau_{T}=\omega_{T}^{-1}$ on the bias collector current I_{C} :

$$
\begin{gathered}
\tau_{T}=\frac{1}{\omega_{T}}=\frac{C_{\pi}+C_{\mu}}{g_{m}}=\frac{g_{m} \tau_{F}+C_{j E}+C_{\mu}}{g_{m}} \\
\tau_{T}=\tau_{F}+\left(\frac{C_{j E}+C_{\mu}}{g_{m}}\right)=\tau_{F}+\frac{V_{t h}}{I_{C}}\left(C_{j E}+C_{\mu}\right)
\end{gathered}
$$

- If the collector current is increased enough to make the second term negligible, then the minimum τ_{T} is the base transit time, τ_{F}. . In practice, the ω_{T} decreases at very high values of I_{C} due to other effects and the minimum τ_{T} may not be achieved.
- Numerical values of $f_{T}=(1 / 2 \pi) \omega_{T}$ range from 10 MHz for lateral pnp's to 75 GHz for submicron, oxide-isolated, SiGe heterojunction npn's

Note that the small-signal model is not valid above f_{T} (due to distributed effects in the base) and the zero in the current gain is not actually observed

Common-Source Current Gain

- CS amplifier has a non-infinite input impedance for $\omega>0$ and we can measure its small-signal current gain.

- Analysis is similar to CE case; result is

$$
\frac{I_{o}}{I_{i n}}=\frac{g_{m}\left(1-\frac{j \omega C_{g d}}{g_{m}}\right)}{j \omega\left(C_{g s}+C_{g d}\right)} \approx \frac{g_{m}}{j \omega\left(C_{g s}+C_{g d}\right)}
$$

- Transition frequency for the MOSFET is

$$
\omega_{T} \approx \frac{g_{m}}{C_{g s}+C_{g d}}
$$

Transition Frequency of the MOSFET

- Substitution of gate-source capacitance and transconductance:

$$
\begin{gathered}
C_{g s}=\frac{2}{3} W L C_{o x} » C_{g d} \text { and } g_{m}=\frac{W}{L} \mu_{n} C_{o x}\left(V_{G S}-V_{T n}\right) \\
\omega_{T} \approx \frac{g_{m}}{C_{g s}}=\frac{\frac{W}{L} \mu_{n} C_{o x}\left(V_{G S}-V_{T n}\right)}{\frac{2}{3} W L C_{o x}}=\frac{3}{2} \mu_{n}\left[\frac{\left(V_{G S}-V_{T n}\right)}{L}\right]\left(\frac{1}{L}\right)
\end{gathered}
$$

- The transition time is the inverse of ω_{T} and can be written as the average time for electrons to drift from source to drain

$$
\tau_{T}=\frac{L}{\mu_{n}\left[\frac{3}{2} \frac{\left(V_{G S}-V_{T n}\right)}{L}\right]}=\frac{L}{\left|\overline{v_{d r}}\right|}
$$

- velocity saturation causes τ_{T} to decrease linearly with L; however, submicron MOSFETs have transition frequencies that are approaching those for oxideisolated BJTs

Frequency Response of Voltage Amplifiers

- Common-emitter amplifier:

Procedure: substitute small-signal model at the operating point and perform phasor analysis

"Brute Force" Phasor Analysis

- "Exact" analysis: transform into Norton form at input to facilitate nodal analysis

Note that $C_{c s}$ is omitted, along with r_{b}

