Magnitude Bode Plot for the Low Pass Filter

Transfer function is

$$\frac{V_{out}}{V_{in}} = \frac{1}{1 + j\omega RC}$$

"The magnitude of the ratio is the ratio of the magnitudes:"

$$\left|\frac{V_{out}}{V_{in}}\right|_{dB} = 20\log\left|\frac{1}{1+j\omega RC}\right| = 20\log\left(\frac{1}{\sqrt{1+(\omega/\omega_o)^2}}\right)$$

• $\omega_0 = 1 / RC$ is the "break frequency" or "-3 dB frequency" $\omega << \omega_0$ results in a magnitude of 20 log (1/1) = 0 dB $\omega >> \omega_0$ results in a magnitude of

$$\left|\frac{V_{out}}{V_{in}}\right|_{dB} = 20\log\left(\frac{1}{\sqrt{1 + (\omega/\omega_o)^2}}\right) \cong 20\log\left(\frac{1}{(\omega/\omega_o)}\right) = -20\log\left(\frac{\omega}{\omega_o}\right)$$

• substitute $\omega = 10 \omega_0$, $100 \omega_0$, $1000 \omega_0$

EE 105 Fall 2000

Week 11

Phase Bode Plot for Low Pass Filter

• From the definition of the phase,

$$\angle \frac{V_{out}}{V_{in}} = \angle \left(\frac{1}{1+j\omega RC}\right) = \angle 1 - \angle (1+j(\omega/\omega_o)) = -\angle (1+j(\omega/\omega_o))$$

• Substituting the arctangent,

$$\angle \frac{V_{out}}{V_{in}} = -\operatorname{atan}\left(\omega/\omega_{o}\right)$$

• Look at asymtotes, again:

 $\omega << \omega_{0}$ results in a phase of - atan(0) = 0 $\omega >> \omega_{0}$ results in a phase of - atan(infinity) = - 90° $\omega = (1/10)\omega_{0}$ results in a phase of - atan(0.1) = - 6° $\omega = (10)\omega_{0}$ results in a phase of - atan(10) = - 84° $\omega = \omega_{0}$ results in a phase of - atan(1) = - 45°

EE 105 Fall 2000

Week 11

Finding the Output Waveform from the Bode Plot

• Suppose that $v_{in}(t) = 100 \text{ mV} \cos (\omega_0 t + 0^\circ)$

note that the input signal frequency is equal to the break frequency and that the phase is 0° ... the input signal phase is arbitrary and is generally selected to be 0. the output phasor is:

$$V_{out} = V_{in} \left[\frac{1}{1 + j(\omega_o / \omega_o)} \right] = V_{in} \left[\frac{1}{1 + j} \right]$$

magnitude:

$$\frac{\left|\frac{V_{out}}{V_{in}}\right|_{dB}}{\left|\frac{dB}{dB}\right|} = -3 dB \qquad \dots \qquad \left|\frac{V_{out}}{V_{out}}\right| = \frac{\left|\frac{V_{in}}{\sqrt{2}}\right|}{\sqrt{2}} = \frac{100 \text{mV}}{\sqrt{2}} = 71 \text{mV}$$

phase:

$$\angle \frac{V_{out}}{V_{in}} = \angle 1 - \angle (1+j) = 0 - 45^{\circ} \qquad \angle V_{out} = -45^{\circ}$$

$$V_{out} = (71 \text{mV})e^{-j45^{\circ}}$$

output waveform $v_{out}(t)$ is given by:

$$v_{out}(t) = Re\left(V_{out}e^{j\omega_o t}\right) = Re(71\text{mV}e^{-j45^\circ}e^{j\omega_o t})$$

$$v_{out}(t) = 71 \text{ mV}\cos(\omega_o t - 45^o)$$

EE 105 Fall 2000

Page 4

Bode Plots of General Transfer Functions

 Procedure is to identify standard forms in the transfer functions, apply asymptotic techniques to sketch each form, and then combine the sketches graphically

 $H(j\omega) = \frac{Aj\omega(1+j\omega\tau_{2})(1+j\omega\tau_{4})...(1+j\omega\tau_{n})}{(1+j\omega\tau_{1})(1+j\omega\tau_{3})...(1+j\omega\tau_{n-1})}$

where the τ_i are time constants -- $(1/\tau_i)$ are the break frequencies, which are called *poles* when in the denominator and *zeroes* when in the numerator

• From complex algebra, the factors can be dealt with *separately* in the magnitude and in the phase and the results *added up* to find $|H(j\omega)|$ and phase $(H(j\omega))$

Three types of factors:

- 1. poles (binomial factors in the denominator)
- 2. zeroes (binomial factors in the numerator)
- 3. $j\omega$ in the numerator (or denominator)

(note: we aren't going to consider complex poles)

EE 105 Fall 2000

EE 105 Fall 2000

Page 6

• Solving for V_{π} at the input node:

$$V_{\pi} = \frac{I_s}{(1/Z_{\pi}) + j\omega C_{\mu}}$$

EE 105 Fall 2000

Week 11

Short-Circuit Gain Frequency Response

• Substituting V_{π} into the output node equation--

I _o	$g_m Z_\pi \left(1 - \frac{1}{2}\right)$	$\left(\frac{j\omega C_{\mu}}{g_m}\right)$
$\overline{I_s}$ –	$1 + j\omega C_{\mu}Z_{\pi}$	

• Substituting for Z_{π} and simplifying --

$$\frac{I_o}{I_s} = \frac{g_m r_\pi \left(1 - \frac{j\omega C_\mu}{g_m}\right)}{1 + j\omega r_\pi (C_\pi + C_\mu)} = \frac{\beta_o \left(1 - \frac{j\omega C_\mu}{g_m}\right)}{1 + j\omega r_\pi (C_\pi + C_\mu)} = \beta_o \left[\frac{1 - j\frac{\omega}{\omega_z}}{1 + j\frac{\omega}{\omega_p}}\right]$$

Current gain has one pole:

and one zero

 $\omega_p = (r_{\pi}(C_{\pi} + C_{\mu}))^{-1}$ $\omega_z = (g_m^{-1}C_{\mu})^{-1} \otimes \omega_p$

EE 105 Fall 2000

Page 10

Week 11

Transition Frequency of the Bipolar Transistor

• Dependence of transition time $\tau_T = \omega_T^{-1}$ on the bias collector current I_C :

$$\begin{split} \tau_T &= \frac{1}{\omega_T} = \frac{C_\pi + C_\mu}{g_m} = \frac{g_m \tau_F + C_{jE} + C_\mu}{g_m} \\ \tau_T &= \tau_F + \left(\frac{C_{jE} + C_\mu}{g_m}\right) = \tau_F + \frac{V_{th}}{I_C}(C_{jE} + C_\mu) \end{split}$$

- If the collector current is increased enough to make the second term negligible, then the minimum τ_T is the base transit time, τ_F.. In practice, the ω_T decreases at very high values of I_C due to other effects and the minimum τ_T may not be achieved.
- Numerical values of $f_T = (1/2\pi)\omega_T$ range from 10 MHz for lateral pnp's to 75 GHz for submicron, oxide-isolated, SiGe heterojunction npn's

Note that the small-signal model is not valid above f_T (due to distributed effects in the base) and the zero in the current gain is not actually observed

EE 105 Fall 2000

Transition Frequency of the MOSFET

• Substitution of gate-source capacitance and transconductance:

$$C_{gs} = \frac{2}{3} WLC_{ox} \gg C_{gd}$$
 and $g_m = \frac{W}{L} \mu_n C_{ox} (V_{GS} - V_{Tn})$

$$\omega_T \approx \frac{g_m}{C_{gs}} = \frac{\frac{W}{L} \mu_n C_{ox} (V_{GS} - V_{Tn})}{\frac{2}{3} W L C_{ox}} = \frac{3}{2} \mu_n \left[\frac{(V_{GS} - V_{Tn})}{L} \right] \left(\frac{1}{L} \right)$$

• The transition time is the inverse of ω_T and can be written as the average time for electrons to drift from source to drain

$$\tau_T = \frac{L}{\mu_n \left[\frac{3}{2} \frac{(V_{GS} - V_{Tn})}{L}\right]} = \frac{L}{\left|\frac{V_{dr}}{V_{dr}}\right|}$$

 velocity saturation causes τ_T to decrease linearly with L; however, submicron MOSFETs have transition frequencies that are approaching those for oxideisolated BJTs

EE 105 Fall 2000

Week 11

