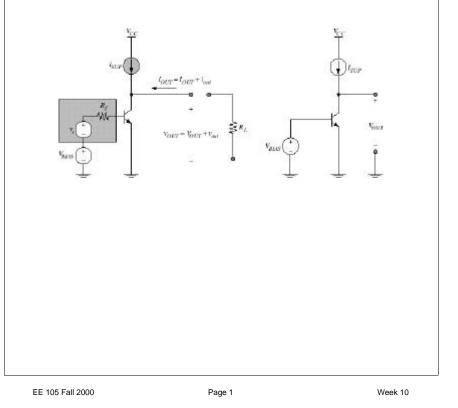


1. Bias amplifier in high-gain region

Note that the source resistor R_S and the load resistor R_L are *removed* for determining the bias point; the small-signal source is ignored, as well.

Use the load-line technique to find $V_{BIAS} = V_{BE}$ and $I_C = I_{SUP}$.

2. Determine two-port model parameters



Small-Signal Model of CE Amplifier

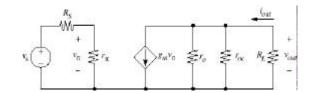
• The small-signal model is evaluated at the bias point; we assume that the current gain is $\beta_o = 100$ and the Early voltage is $V_{An} = 25$ V:

 $g_m = I_C / V_{th}$ (at room temperature)

 $r_{\pi} = \beta_o / g_m = 10 \text{ k}\Omega$

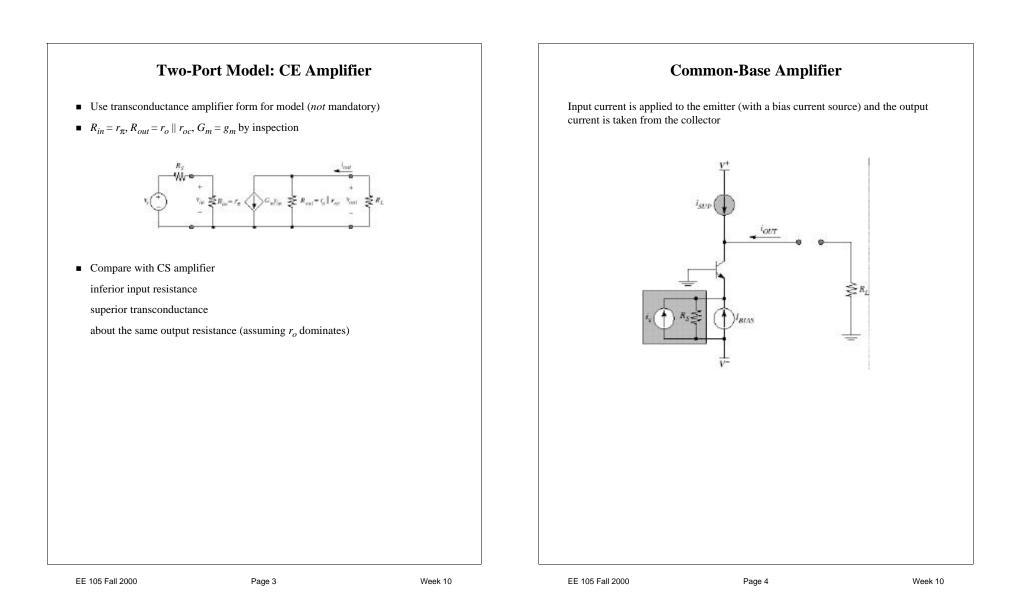
 $r_o = V_{An} / I_C = 100 \text{ k}\Omega$

• Substitute small-signal model for BJT; *V_{CC}* and *V_{BIAS}* are short-circuited for small-signals



EE 105 Fall 2000

Week 10

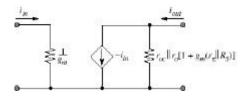


Common Base Two-Port Model

• See text for details of nodal analysis

$$R_{in} \cong 1/g_m, R_{out} \cong r_{oc} || [r_o(1 + g_m(r_\pi || R_S))], A_i = -\beta_o/(1 + \beta_o) \cong -1$$

• CB stage is an excellent current buffer



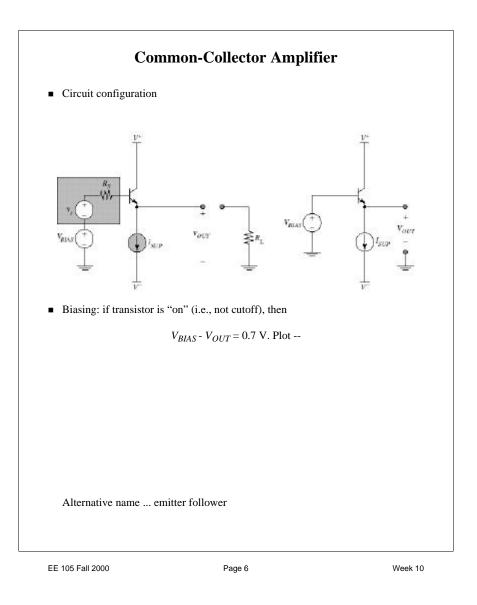
Comparison with the CG stage:

note the effect of the source resistance on the output resistance

if R_S is much greater than r_{π} , then the output resistance is approximately:

 $R_{out} \approx r_{oc} || [\beta r_o]$

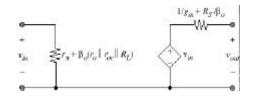
EE 105 Fall 2000



Common Collector Two-Port Model

Two-port model:

presence of \boldsymbol{r}_{π} makes the analysis more involved than for a common drain



Note 1: both the input and the output resistances depend on the load and source resistances, respectively (note typo in Fig. 8.47 in text)

Note 2: this model is approximate and can give erroneous results for extremely low values of R_L . However, it is very convenient for hand analysis.

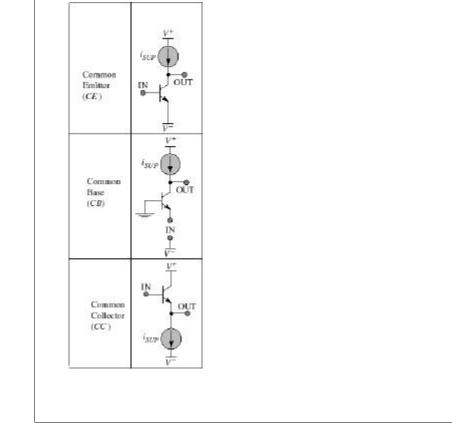
Comparison with CD stage:

CC's input resistance: high but not infinity

CC's output resistance: generally lower (but watch out for large R_S)

Summary of BJT Single-Stage Amplifiers

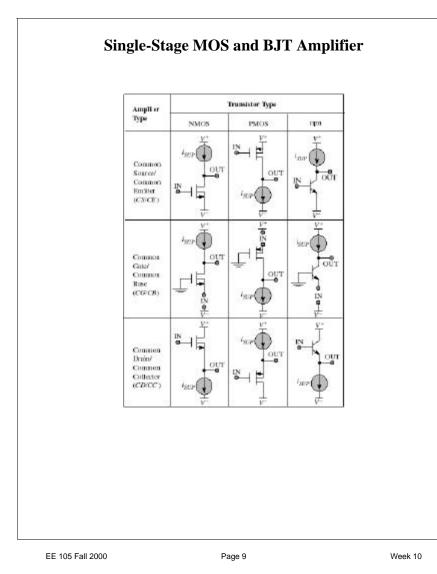
Why no pnp's?

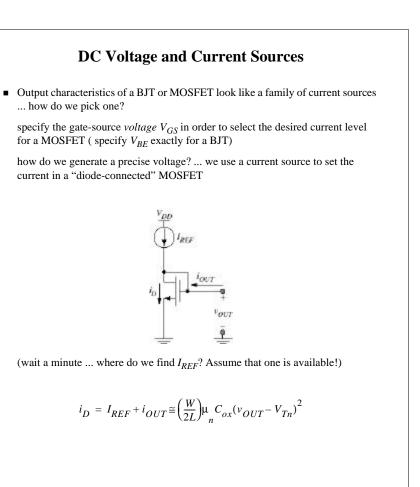


EE 105 Fall 2000

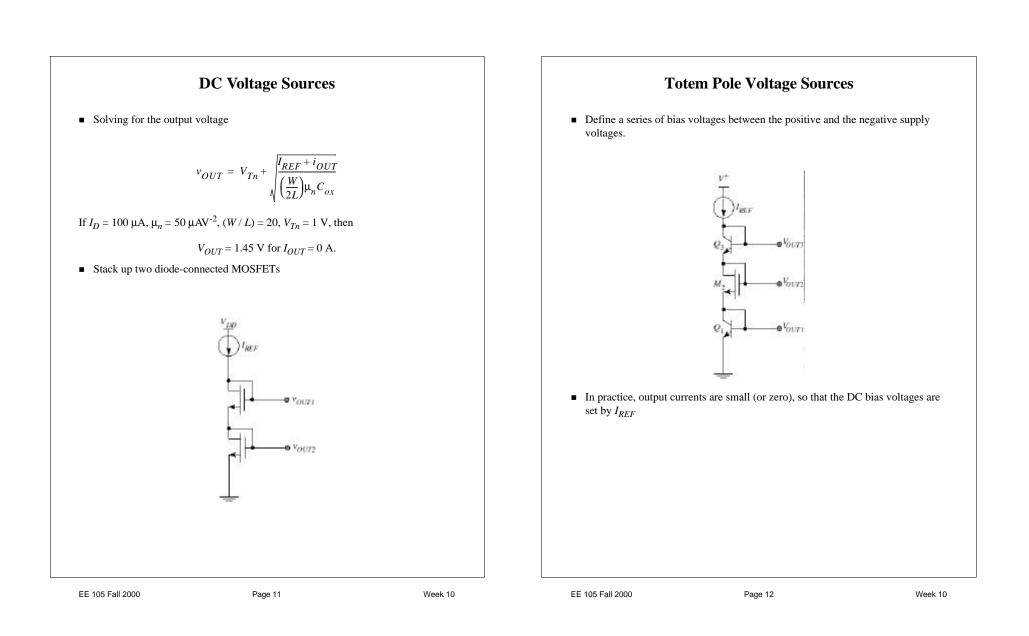
Week 10

EE 105 Fall 2000



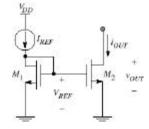


EE 105 Fall 2000



MOSFET Current Sources

Bias the n-channel MOSFET with a MOSFET DC voltage source!



• Intuitively, V_{REF} is set by I_{REF} and determines the output current of M_2

 $V_{REF} = V_{Tn} + \sqrt{\frac{I_{REF}}{\left(\frac{W}{2L}\right)_1 \mu_n C_{ox}}} = V_{GS1} = V_{GS2}$

Substituting into the drain current of M_2 (and neglecting $(1 + \lambda_n V_{DS2})$ term)

$$i_{OUT} = i_{D2} = \left(\frac{W}{2L}\right)_2 \mu_n C_{ox} (V_{GS2} - V_{Tn})^2$$

EE 105 Fall 2000

Page 13

Week 10

EE 105 Fall 2000

Page 14

MOSFET Current Sources (cont.)

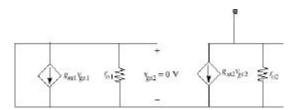
• Output current is scaled from I_{REF} by a geometrical ratio:

$$i_{OUT} = i_{D2} = \left(\frac{W}{2L}\right)_2 \mu_n C_{ox} \left(V_{Tn} + \sqrt{\frac{I_{REF}}{\left(\frac{W}{2L}\right)_1 \mu_n C_{ox}}} - V_{Tn}\right)^2$$

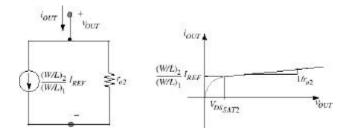
$$I_{OUT} = \left(\frac{(W/L)_2}{(W/L)_1}\right) I_{REF}$$

Week 10

• Small-signal model: source resistance is r_{o2} by inspection



• Combine output resistance with DC output current for approximate equivalent circuit ... actual i_{OUT} vs. v_{OUT} characteristics are those of M_2 with $V_{GS2} = V_{REF}$

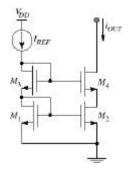


The model is only valid for $v_{DS} = v_{OUT} > v_{DS(SAT)} = V_{GS} - V_{Tn}$

EE 105 Fall 2000

Week 10

• In order to boost the source resistance, we can study our single-stage building blocks and recognize that a common-gate is attractive, due to its high output resistance



 Adapting the output resistance for a common gate amplifier, the cascode current source has a source resistance of

$$r_{oc} = (1 + g_{m4}r_{o2})r_{o4} \approx g_{m4}r_{o4}r_{o2}$$

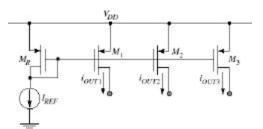
Penalty for cascode:

needs larger V_{OUT} to function

EE 105 Fall 2000

MOSFET Current "Mirrors"

• n-channel current source *sinks* current to ground ... how do we *source* current from the positive supply? Answer: p-channel current sources...?



 By mixing n-channel and p-channel diode-connected devices, we can produce current sinks and sources from a reference current connected to V_{DD} or ground.

Two-Port Parameters for Single-Stage Amplifiers

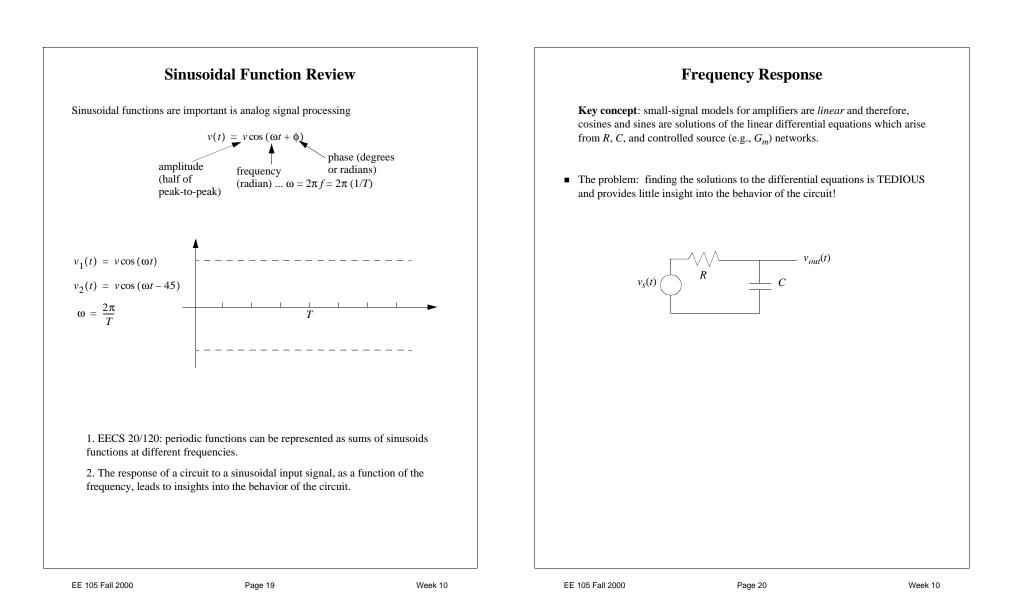
Amplifier Type	Controlled Source	Input Resistance R _{in}	Output Resistance R _{out}
Common Emitter	$G_m = g_m$	r_{π}	$r_o \parallel r_{oc}$
Common Source	$G_m = g_m$	infinity	$r_o \parallel r_{oc}$
Common Base	<i>A_i</i> = -1	1 / g _m	$r_{oc} \parallel [(1 + g_m(r_{\pi} \parallel R_S)) r_o],$ for $g_m r_o >> 1$
Common Gate	<i>A_i</i> = -1	$\frac{1 / g_m, (v_{sb} = 0)}{\text{-otherwise-}}$ $\frac{1 / (g_m + g_{mb})}{1 / (g_m + g_{mb})}$	$\begin{array}{c} r_{\rm oc} \parallel [(1+g_m R_S)r_o], (v_{sb}{=}0) \\ -otherwise{-} \\ r_{\rm oc} \parallel [(1+(g_m+g_{mb})R_S)r_o] \\ both \mbox{ for } r_o >> R_S \end{array}$
Common Collector	$A_{\nu} = 1$	$r_{\pi} + \beta_0(r_o \parallel r_{oc} \parallel R_L)$	$(1 / g_m) + R_S / \beta_0$
Common Drain	$A_{v} = 1 \text{ if } v_{sb} = 0,$ -otherwise- $g_{m} / (g_{m} + g_{mb})$	infinity	$\frac{1 / g_m \text{ if } v_{sb} = 0,}{\text{-otherwise-}}$ $\frac{1 / (g_m + g_{mb})}{1 + g_{mb}}$

Note: appropriate two-port model is used, depending on controlled source

EE 105 Fall 2000

Page 17

Week 10



Phasors

It is much more efficient to work with *imaginary exponentials* as "representing" the sinusoidal voltages and currents ... since these functions are solutions of linear differential equations and

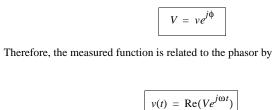
$$\frac{d}{dt}(e^{j\omega t}) = j\omega(e^{j\omega t})$$

How to connect the exponential to the measured function v(t)? Conventionally, v(t) is the real part of the imaginary exponential

$$v(t) = v\cos(\omega t + \phi) \rightarrow \operatorname{Re}(ve^{(j\omega t + \phi)}) = \operatorname{Re}(ve^{j\phi}e^{j\omega t})$$

where *v* is the amplitude and ϕ is the phase of the sinusoidal signal *v*(*t*).

The *phasor V* is defined as the complex number



EE 105 Fall 2000

Week 10

Circuit Analysis with Phasors

• The current through a capacitor is proportional to the derivative of the voltage:

$$i(t) = C \frac{\mathrm{d}}{\mathrm{d}t} v(t)$$

We assume that all signals in the circuit are represented by sinusoids. Substitution of the phasor expression for voltage leads to:

$$v(t) \rightarrow V e^{j\omega t}$$
 ... $I e^{j\omega t} = C \frac{d}{dt} (V e^{j\omega t}) = j\omega C V e^{j\omega t}$

which implies that the ratio of the phasor voltage to the phasor current through a capacitor (the *impedance*) is

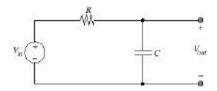
$$Z(j\omega) = \frac{V}{I} = \frac{1}{j\omega C}$$

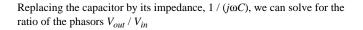
 Implication: the phasor current is *linearly proportional* to the phasor voltage, making it possible to solve circuits involving capacitors and inductors as rapidly as resistive networks ... as long as all signals are sinusoidal.

EE 105 Fall 2000

Phasor Analysis of the Low-Pass Filter

Voltage divider with impedances --





$$\frac{V_{out}}{V_{in}} = \frac{1/j\omega C}{R + 1/j\omega C}$$

multiplying by $j\omega C/j\omega C$ leads to

$$\frac{V_{out}}{V_{in}} = \frac{1}{1 + j\omega RC}$$

EE 105 Fall 2000

Week 10

Frequency Response of LPF Circuits

The phasor ratio V_{out} / V_{in} is called the transfer function for the circuit

How to describe V_{out} / V_{in} ?

complex number ... could plot $\text{Re}(V_{out} / V_{in})$ and $\text{Im}(V_{out} / V_{in})$ versus frequency

polar form translates better into what we measure on the oscilloscope ... the magnitude (determines the amplitude) and the phase

• "Bode plots":

magnitude and phase of the phasor ratio: V_{out} / V_{in}

range of frequencies is very wide (DC to 10^{10} Hz, for some amplifiers) therefore, plot frequency axis on log scale

range of magnitudes is also very wide: therefore, plot magnitude on log scale

Convention: express the magnitude in decibels "dB" by

$$\frac{V_{out}}{V_{in}}\Big|_{dB} = 20\log\left|\frac{V_{out}}{V_{in}}\right|$$

phase is usually expressed in degrees (rather than radians):

$$\angle \frac{V_{out}}{V_{in}} = \operatorname{atan} \left[\frac{Im(V_{out}/V_{in})}{Re(V_{out}/V_{in})} \right]$$

EE 105 Fall 2000

Complex Algebra Review

* Magnitudes:

$$\begin{vmatrix} \frac{Z_1}{Z_2} \\ = \frac{|Z_1|}{|Z_2|} = \frac{\sqrt{X_1^2 + Y_1^2}}{\sqrt{X_2^2 + Y_2^2}}, \text{ where}$$

$$Z_1 = X_1 + jY_1 \qquad Z_2 = X_2 + Y_2$$

* Phases:

$$\angle \frac{Z_1}{Z_2} = \angle Z_1 - \angle Z_2 = \operatorname{atan} \frac{Y_1}{X_1} - \operatorname{atan} \frac{Y_2}{X_2}$$

* Examples:

EE 105 Fall 2000

Page 25

Week 10