EE100 Summer 2008 - Nonlinear Problem Set

Muthuswamy, Bharathwaj
mbharat@cory.eecs.berkeley.edu

1. Plot the IV graph of the following circuit at the terminals indicated:

Figure 1. A negative-impedance converter (NIC)
2. One of the circuits below is an oscillator and the other is a latch ${ }^{1}$.
(a) Identify the oscillator, find the frequency of oscillation and sketch $v(t)$.
(b) Identify the latch. Describe in a FEW SHORT (≤ 3) SENTENCES as to how you switch from one stable equilibrium point to the other.

Circuit 1

Circuit 2

[^0](3) Ref.: Chua, Desoer and Kuh. Linear and Nonlinear Circuits. McGraw-Hill.

Consider the circuit shown in figure P6.21 (a) where N is described by the $\mathrm{i}-\mathrm{v}$ characteristic shown in figure P6.21 (b).
i. Indicate the dynamic route. Label all equilibrium points and state whether they are stable or unstable.
ii. Suppose $i_{L}(0)=-20 \mathrm{~mA}$; calculate and sketch $i(t)$ and $v(t)$ for $t \geq 0$.

(a)

Figure P6. 21

(4) Ref.: Chua, Desoer and Kuh. Linear and Nonlinear Circuits. McGraw-Hill. Consider the circuit shown in figure P6.23 (a) where N is described by the i-v characteristic shown in figure P6. 23 (b).
i. Sketch the dynamic route.
ii. If $v_{c}(0)=2 \mathrm{~V}$ and $\mathrm{i}_{\mathrm{c}}(0)=-2 \mathrm{~mA}$; calculate and sketch $\mathrm{i}(\mathrm{t})$ and $\mathrm{v}(\mathrm{t})$ for $\mathrm{t} \geq 0$.

Figure P6.23

[^0]: ${ }^{1}$ Thanks to Ben Cook for teaching me the correct terminology: we are dealing with latches, not flip-flops!

