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Exercises

1. Verify that out of the three zero crossings in Fig. 2.11b, only ¢, qualifie
as a relaxation point.

2. Find all relaxation points associated with the Josephson junction defingg
earlier by Eq. (1.95).

3. Prove that if a nonlinear capacitor or inductor has more than One
relaxation point, then each point will give the same stored energy %c(Q')
or &, (d).

3 FIRST-ORDER LINEAR CIRCUITS

Circuits made of one capacitor (or one inductor), resistors, and independen;
sources are called first-order circuits. Note that “resistor” is understood in the
broad sense: It includes controlled sources, gyrators, ideal transformers, ec,

In this section, we study first-order circuits made of linear time-invariang
elements and independent sources. Any such circuit can be redrawn as showy
in either Fig. 3.1a or b, where the one-port N is assumed to include all othey
elements (e.g., independent sources, resistors, controlled sources, gyratoss
ideal transformers, etc.).'® ,

Applying the Thévenin-Norton equivalent one-port theorem from Chap. 5,
we can, in most instances, replace N by the equivalent circuit shown in Fig,
3.2a and b, respectively.
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Figure 3.1 (a) First-order RC circuit. (b) First-order RL circuit.

R, 82

Uocln) (i) v igelt) Geq S L
C be "
I - iy

{a) (8)

Figure 3.2 Equivalent first-order circuits.

" Without loss of generality, we draw ¢, and {, as shown in Fig. 3.1b so that i, = i (the dual of
v, = v in Fig. 3.1a). This will guarantee the state equation (3.26) will come out to be the dual of
Eq. (3.2a).



Applying KVL we obtain
Requ + Ve = UOC(t) (310)

Substituting i.= CJ, and solving
for ., we obtain

U' - Uc + UOC(!)
¢~ "R, R.C

eq

(3.2a)
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Applying KCL we obtain
Gqup +ip =isc(t) (3.1b)

Substituting v, = Li; and solving
for i, , we obtain

. iL & is(‘(t)

‘T TG,LT G,L

(3.2b)

When written in the above standard form, this first-order linear differential
equation is called a state equation and the variable v (respectively, i, ) is called

a state variable.

Given any initial condition
vo(2,) at any initial time #,, our
objective is to find the solution
ve(t) for all r=1,. We will show
that v(r) depends only on the ini-
tial condition v.(¢,) and the
waveform ve () over [¢,, 7].

Once the solution v (-) is
found, we can apply the substi-
tution theorem from Chap. 5 and
replace the capacitor in Fig. 3.1a
by a voltage source v(¢).

Given any initial condition
i, (t,) at any initial time ¢,, our
objective is to find the solution
i;(t) for all t=1¢,. We will show
that i, (¢) depends only on the ini-
tial condition i,(f,) and the
waveform ig.(-) over [f,, f].

Once the solution i,(:) is
found, we can apply the substi-
tution theorem from Chap. 5 and
replace the inductor in Fig. 3.1b
by a current source i, (7).

The resulting equivalent circuit, being resistive, can then be solved using
techniques developed in the preceding chapters.

In Sec. 3.1 we show that the solution of any first-order linear circuit can be
found by inspection, provided N contains only dc sources. By repeated
application of this “inspection method,” Sec. 3.2 shows how the solution can
be easily found if N contains only piecewise-constant sources. This method is
then applied in Sec. 3.3 for finding the solution—called the impulse response—
when the circuit is driven by an impulse 8(¢). Finally, Sec. 3.4 gives an explicit
integration formula for finding solutions under arbitrary excitations.

3.1 Circuits Driven by DC Sources

When N contains only dc sources, Ugc(t) = voe and ig.(f) =i, are con-
stants in Fig. 3.2 and in Eq. (3.2). Let us rewrite Egs. (3.2a) and (3.2b) as
follows:



322 LINEAR AND NONLINEAR CIRCUITS

. x  x(t.)
State = (3.3)
equation L z
where where
A A .
X=Ug =i
A
x(t,) S voc  (340) (L) =i (34
rs R, C r= G, L
for the RC circuit. for the RL circuit.

Given any initial condition x = x(fy) at r=1t;, Eq. (3.3) has a unigy,
solution'”

X(0) -~ x(t.) = [x(tg) = x(t.)] exp 2 63

which holds for all times ¢, i.e., —» <t <®, To verify that this is indeed the
solution, simply substitute Eq. (3.5) into Eq. (3.3) and show that both sideg
are identical. Observe that at r=1¢,, both sides of Eq. (3.5) reduce to
x(ty) — x(t,,). Note also that the solution given by Eq. (3.5) is valid whether 75
positive or negative.

The solution (3.5) is determined by only three parameters: x{t,), x(1,),
and 7. We call them initial state, equilibrium state, and time constant, respective-
ly. To see why x(z.) is called the equilibrium state, note that if x(z;) = x(z,),
then Eq. (3.3) gives £(,) =0 and thus x(¢) = x(t..) for all r. Hence the circuit
remains ‘“‘motionless,” or in equilibrium.

Since the ‘“inspection method” to be developed in this section depends
crucially on the ability to sketch the exponential waveform gquickly, the
following properties are extremely useful.

A. Properties of exponential waveforms Depending on whether 7 is positive or
negative, the exponential waveform in Eq. (3.5) tends either to a constant or
to infinity, as the time f tends to infinity. Hence, it is convenient to consider
these two cases separately.

7 >0 (Stable case) When 7>0, Eq. (3.5) shows that x(¢) — x(r.), i.e., the
distance between the present state and the equilibrium state x(z.), decreases
exponentially: For all initial states, the solution x(t) is sucked into the
equilibrium and |[x(f) — x(z,.)| decreases exponentially with a time constant 7.

' We write x{r_) on the left side to make it easier to remember this important formula.
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The solution (3.5) for 7 >0 is sketched in Fig. 3.3 for two different initial
states x(f,) and x(¢;) for r=1,. Observe that because the time constant 7 is
positive,

x(t)— x(r,) as r— o (3.6)

Thus, when 7 >0, we say the equilibrium state x(¢.) is stable because any
initial deviation x(t,) — x(r..) decays exponentially and x(r)~> x(z,) as 1— .

The exponential waveforms in Fig. 3.3 can be accurately sketched using the
following observations:

1. The tangent at t =1, passes through the point [z,, x(¢,)] and the point
[t, + 7, x(t.)].

2. After one time constant 7, the distance between x(¢) and x(z.) decreases
approximately by 63 percent of the initial distance |x(z,) — x(1..)|.

3. After five time constants, x(f) practically attains the steady-state value x(z, ).

(Indeed, e =0.007.)

Example 1 (Op-amp voltage follower: Stable configuration) Consider the
op-amp circuit shown in Fig. 3.4a. Using the ideal op-amp model, this
circuit was analyzed earlier in Sec. 2.2 (Fig. 2.1) of Chap. 4. Assuming the
switch is closed at t =0, we found v,(1)=v,,(1)=10V for t = 0.

In practice, the output is observed to reach the 10-V solution after a
small but finite time. In order to predict the transient behavior before the

iy | SN
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Solution with initial state
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Figure 3.3 The solution tends to the equilibrium state x(z,) as £— = when the time constant 7 is
positive.
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Figure 3.4 Transient behavior of op-amp voltage follower circuit.

equilibrium is reached, let us replace the op amp in Fig. 3.4a by the
dynamic circuit model shown in Fig. 3.4b.*° To analyze this first-order
circuit, we extract the capacitor and replace the remaining circuit by it
Thévenin equivalent as shown in Fig. 3.4c, where

R .
R, = AT1 A since A &1 (3.7
10A
Voc= A1~ 10 since A® 1 (3.9)

Assuming A =10°, R=100Q, and C=3F, we obtain R,= 107°0 and
Vo =~ 10 V. Consequently, the time constant and equilibrium state are
given respectively by 7= R, C=3ms and v(r..) = voc =10 V. Assuming
the capacitor is initially uncharged, i.e., v,{0) =0, the resulting output
voltage can be easily sketched as shown in Fig. 3.44. Note that after five
time constants or 15 ms, the output is practically equal to 10V.

* A more realistic dynamic op-amp circuit model for high-frequency applications would require
several linear capacitors. The one-capacitor model chosen in Fig. 3.4, though not valid in general,
does predict the transient behavior correctly for the voltage follower circuit.
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7 <0 (Unstable case) When <0, Eq. (3.5) shows that the quantity x(1) —
x(t,.) increases exponentially for all initial states, i.e., the solution x(r) diverges
from the equilibrium, and x(r) — x(r,) increases exponentially with a time
constant 7.

The solution (3.5) for v <0 is sketched in Fig. 3.5 for two different initial
states x(¢,) and x{(z,).

Observe that, since the time constant T is negative, as t— =, x(t})— = if
x(ty) > x(1,.), and x(t)— —= if x(z,) < x(t.).

Thus, when 7<0, we say the equilibrium state x(z,) is unswable because
any initial deviation x(#,) — x(t..) grows exponentially with time and {x(¢)| — =
as t— =,

However, if we run time backward, then
x(t)— x(r.) as t— —x (3.9)
Consequently, x(z.) can be interpreted as a virtual equilibrium state.

The exponential waveform in Fig. 3.5 can be accurately sketched using the
following observations:

1. The tangent at t=1, passes through the point [#,.x(¢,)] and the point
[t(] - |T|! X(II)]-

2. At t=1t,+|7|, the distance |x(r, + |7]) — x(¢.)| is approximately 1.72 times
the initial distance |x(r,) — x(¢.)|.

Solution with initial state
x(ty) > x(lo) tends to + =

x(tg) -— ——~I- —_————

Xl RIS =

M) p———F————— 172 [x(te) = ¥(tg)]

Solution with initial state
R(rg) <x(feo) tendsto o

Figure 3.5 The solution tends to the “virtual™ equilibrium state x(z.) as /— —= when the time
constant T is negative.
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Example 2 (Op-amp voltage follower: Unstable configuration) The Op-apy

circuit in Fig. 3.6a is identical to that of Fig. 3.4a except for an imerchan

between the inverting (—) and the noninverting (+) terminals. Using tﬁe
ideal op-amp model in the linear region, we would obtain exactly the Same
answer as before, namely, v, =10V for =0, provided £, > 10 V. Let UE
see what happens if the op amp is replaced by the dynamic model adopg, q
carlier in Fig. 3.4b. The resulting circuit shown in Fig. 3.6 resembieg thay
of Fig. 3.4b except for an important difference: The polarity of v, i noy
reversed. The parameters in the Thévenin equivalent circuit now becom,

R
R =—_2 .= since A1 (3.10)

0A
Voe = % =10 since 4 > 1 (3.11)
Assuming the same parameter values as in Example 1, we obtain R .,
—10"" Q and v, =~ 10 V. Consequently, the time constant and equilibrei?}m
state are given respectively by 7= —3ms and v,{t.)=10V. Assuming
v,{0}=0 as in Example 1, the resulting output voltage can be easily
sketched as shown in Fig. 3.64d.

*+
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Figure 3.6 Unstable transient behavior of op-amp voltage follower circuit.
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Note that the solution differs drastically from that of Fig. 3.4d: It tends
to —w! Of course, in practice, when v,(t) decreases to —E,,,, the op-amp
negative saturation voltage, the solution would remain constant at —E_, .
Clearly, this circuit would not function as a voltage follower in practice.

B. Elapsed time formula We will often need to calculate the time interval
between two prescribed points on an exponential waveform. For example, to
obtain the actual solution waveform for the circuit in Fig. 3.6, we need to
caiculate the time that elapsed when v, decreases from v, =0 to v, =—-15V
(assuming E_, =15V) in Fig. 3.64.

Given any two points [(z;, x(¢;)) and (¢,, x(z,))] on an exponential wave-
form (see, ¢.g., Figs. 3.3 and 3.5), the time it takes to go from x(¢;) to x(¢, ) is
given by

Elapsed f,—t,=7ln x(4,) = x(t.)
Apse k& = —:—-—-—
time formula . x(tk) x(‘m)

(3.12)

To derive Eq. (3.12), let t=t; and f = ¢, in Eq. (3.5), respectively:

oy (tj - to)
) (1) = [x(5) ~ Kt exp — L2 G.13)
(1) ~ x(t2) = [x(ry) = x(t)] exp —2="0) (3.14)

Dividing Eq. (3.13) by Eq. (3.14) and taking the logarithm on both sides, we
obtain Eq. (3.12).

RemMark The above derivation does not depend on whether 7 is positive or
negative.

C. Inspection method (First-order linear time-invariant circuits driven by de
sources) Consider first the first-order RC circuit in Fig. 3.1a where all indepen-
dent sources inside N are dc sources. Equation (3.5) gives us the voltage
waveform across the capacitor, namely,

(t"' tﬁ)

velt) = ve(t,) + [ve(ty) — ve(te)] exp (3.15)
Suppose we replace the capacitor by a voltage source defined by Eq. (3.15).
Assuming the resulting resistive circuit is uniquely solvable, we can apply the
substitution theorem to conclude that the solution inside N of the resistive
circuit is identical to that of the first-order RC circuit.

Let v, denote the voltage across any pair of nodes, say ( and & and
assume that N contains a independent dc voltage sources V;, V,,,...,V,, and
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B independent dc current sources /;, L, ..., Lz. Applying the superp,,

: o it
theorem from Chap. 5, we know the solution v, (¢) is given by an expresg; o

the form N of
a B
v (1) = Hyu (1) + E{ HV,+ 2 K1, (3.1)
j= j=1 ’
where H,, H;, and K, are constants (which depend on element valueg an
circuit configuration). Substituting Eq. (3.15) for v.(¢) in Eq. (3.16) and
rearranging terms, we obtain d
—(t— 1)
U;k(t) —v,t.) = [U,k(fo) - Ujk(tm)] exp - . (3,]7)
where
. a 8
v}k(tw) =Hy(e) + z:] HV, + §:1 Kl; (3-18)
i= i=
and
s @ g
vilto) = Hyv oty) + 2& HV,+ 21 Kl (3.19)
J= j=

Since Eq. (3.17) has exactly the same form as Eq. (3.5), and since nodes )
and (&) are arbitrary, we conclude that:

The voltage v, (¢) across any pair of nodes in a first-order RC circuit driven
by dc sources is an exponential waveform having the same time constant 1 as thy
of ve(t).

By the same reasoning, we conclude that:

The current i(t) in any branch j of a first-order RC circuit driven by 4,
sources is an exponential waveform having the same time constant 7 as that of
ve(1).

It follows from duality that the voltage v, (t) across any pair of nodes, or the
current i(t) in any branch j of a first-order RL circuit driven by dc sources is an
exponential waveform having the same time constant 7 as that of i, (¢).

The above ‘“‘exponential solution waveform’ property, of course, assumes
that the first-order circuit is not degenerate, i.e., that it is uniquely solvable and
that 0 <|7| <o,

It is important to remember that all voltage and current waveforms in a
given first-order circuit have the same time constant 7 as defined in Eq. (3.4).

Moreover, as we approach the equilibrium, i.e., when t— +e (if 7>0)or
t— —o (if 7 <0), the capacitor current and the inductor voltage both tend to
zero. This follows from Figs. 3.3 and 3.5, i. = C¥, and v, = Li,.

Since an exponential waveform is uniquely determined by only three
parameters [initial state x(z,), equilibrium state x(z..), and time constant r|, the
following “inspection method” can be used to find the voltage solution v,(f)
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across any pair of nodes () and (®) or the current solution i,(¢) in any branch j,
in any uniquely solvable linear first-order circuit driven by dc sources:

RC circuit: given v(1,). RL circuit: given i,(1,).

1. Replace the capacitor by a 1. Replace the inductor by a

dc volrage source with a
terminal voltage equal to
v.(t,). Label the voltage
across node-pair (), ® as
v, (ty) and the current #, as
i)(;). Solve the resulting
resistive circuit for v, (f,)
or i(t,).

. Replace the capacitor by
any open circuit. Label the
voltage across node-pair
@, ® as v,(t,) and the
current i, as i(t.). Solve
for v, (t,) or i(t.).

. Find the Thévenin equiva-
lent circuit of N. Calculate
the time constant 7=
R.C.

I 0<|r]<ow, use the
above three parameters to
sketch the exponential so-
lution waveform.

dc current source with a
terminal current equal to
i,(t,). Label the voltage
across node-pair @), ® as
v, (t;) and the current i, as
i{t;). Solve the resulting
resistive circuit for v, (4,)

or i;(t,).

. Replace the inductor by a

short circuit. Label the vol-
tage across node-pair (),
® as v, (t.) and the cur-
rent i, as i(t.). Solve for

v, (t,) or ().

. Find the Norton equiva-

lent circuit of N. Calculate
the time constant 7=
GeqL.

I 0<|7]<=, use the

above three parameters to
sketch the exponential so-
lution waveform.

REMARKS

1. The above inspection method eliminates the usual step of writing the
differential equation: It reduces each step to resistive circuit calculations.
2. The above method is valid only if the circuit is uniquely solvable. For
example, if the one-port N in Fig. 3.1 does not have a Thévenin and
Norton equivalent circuit, it is not uniquely solvable.

3. The above method assumes the circuit is not degenerate in the sense
that 0 <|7| <. This means that R, # 0 and is finite in Fig. 3.24, and that
G,, # 0 and is finite in Fig. 3.2b.

3.2 Circuits Driven by Piecewise-Constant Signals

Consider next the case where the independent sources in N of Fig. 3.1 are
piecewise-constant for ¢>¢,. This means that the semi-infinite time interval
t, < t <o can be partitioned into subintervals [t;,t;,,), j=1,2, ..., such that
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all sources assume a constant value during each subinterval. Hence, we e
analyze the circuit as a sequence of first-order circuits driven by dc SOUrce,
each one analyzed separately by the inspection method. Since the circuii
remains unchanged except for the sources, the time constant 7 remaing .
changed throughout the analysis.

The initial state x(1,) and equilibrium state x(¢,) will of course vary gy
one subinterval to another. Although the same procedure holds in the deter.
mination of x(z.), one must be careful in calculating the initial value gt the
beginning of each subinterval 1, because at least one source changes its vy,
discontinuously at each boundary time 7, between two consecutive subinteryy
In general, x(¢,—) # x(f,+), where the — and + denote the limir of x(t) as t—, ['
from the left and from the right, tespectively. The initial value to be used in g,
calculation during the subinterval [z, 7,_,) is x(¢;+).

Although in general both v, (t) and i(t) can jump, the “continuity
property” in Sec. 2.2 guarantees that in the usual case where the capaciiy
current (respectively, inductor voltage) waveform is bounded, the capacitg,
voltage (respectively, inductor current) waveform is a continuous function o
time and therefore cannot jump. This property is the key to finding the
solution by inspection, as illustrated in the following examples.

Example 1 Consider the RC circuit shown in Fig. 3.7a: v () is given by
Fig. 3.7a and v.(0) = 0. Our objective is to find i-(r), v(?), and vg(r) for

v 1)

ol

@)

Figure 3.7 Solution waveforms for RC circuit. Here, 7 denotes the rime constant of the expo-
nential.
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t =0 by inspection. Since v(0)=0 and v (1) =0 for + =0, it follows that
ic()=v(t)=Ve(t)=0 for r=0.

The solution waveforms for ¢ >0 consists of exponentials with a time
constant 7= RC. At r=0+, uvsing the continuity property. we have
veA0+)=v(0—)=0. Therefore, vgx(0+)=rv,(0+)-v (0+)=E and
ic(0+)=1vg,(0+)/R=E/R. To find the equilibrium state, we open the
capacitor and find i(¢,) =0, v(t.) = E, and vg(1,)=0.

These three pieces of information allow us to sketch i(#), v.(¢), and
vg(t) for t=0 as shown in Fig. 3.7b, ¢, and d, respectively. Note that
io(r) = Cdv(t)/dr and vg(t) + v (t) = E for t =0, as they should. Observe
also that whereas vg(1) is discontinuous at t =0, v (f) is continuous for all
¢, as expected.

REMARKS

1. The circuit in Fig. 3.7 is often used to model the situation where a dc
voltage source is suddenly connected across a resistive circuit which
normally draws a zero-input current. The linear capacitor in this case is
used to model the small parasitic capacitance between the connecting
wires. Without this capacitor, the input voltage would be identical to
v, (7). However, in practice, a “transient” is always observed and the circuit
in Fig. 3.7a represents a more realistic situation. In this case, the time
constant 7 gives a measure of how “fast” the circuit can respond to a step
input. Such a measure is of crucial importance in the design of high-speed
circuits, say in computers, measuring equipment, etc.

2. Since the term time constant is meaningful only for first-order circuits, a
more general measure of “response speed’ called the rise fime is used in
specifying practical equipments.

The rise time ¢, is defined as the time it takes the output waveform to rise

from 10 percent to 90 percent of the steady-state value after application of a
step input.

For first-order circuits, the following simple relationship between ¢, and 7

follows directly from Eq. (3.12):

Rise
time

01E-E
t, =71l

! NoSE-E " In9=2.27 (3.20)

Example 2 Consider the RL circuit shown in Fig. 3.8a, driven by a
periodic square-wave current source in Fig. 3.8b. Our objective is to find
i (t) through the resistor when (¢) R=10kQ, L =1 mH and (b) R =1k(,
L =10mH,
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Figure 3.8 (a) RL circuit. (b) Input current waveform with & =1 us and 8, =3 gs. (c) Outpy
current waveform when 7 < 8,. (d) Output current waveform when 7> §,.

(a) Small time constant case: 7= GL = L/R=0.1 us. Since 7<8, =10y,
the exponential waveform solution in each subinterval of width 8, or 8, will
have essentially reached its steady state and we only need to calculate i (r)
over one period. In other words, the solution is periodic for all practical
purposes.

Since [ (#)=0 for t=0, the inductor is in equilibrium and can be
replaced by a short circuit at 1 =0— so that i,(0+)=1i,(0—)=0. Hence
i, (0+)=i(0+)—i, (0+)=10-0=10mA.

To find i,(¢,.) for the circuit during the subinterval [0, &,), we replace
the inductor by a short circuit and obtain i,(¢,) = 10mA and i.(s.)=0.
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At t=8 =1pus, i,(8,+)=i,(8,-)=10mA. Hence i,(5+)=
i(8,+)—i,(8,+)=—-5-10=-15mA. Hence i, jumps at ¢ = §, from 0 to
—15mA.

To find i,(r,) for the circuit during the subinterval [§,, 8, + 8,), we
replace the inductor by a short circuit again and obtain f,(z,) = 0.

At t=8+8,=4 ps, i,(f) jumps again from 0 to 15mA, and the
solution repeats itself thereafter, as shown in Fig. 3.8c.

(b) Large time constant case: T =10 us. Since 7> §, = 0.17, the exponen-
tial waveform does not have enough time to reach a steady state during
each subinterval. Consequently, the solution i (f) is not periodic and we
will have to partition 0=<f<c into infinitely many subintervals [0, §,),
[8,,8, +8,). [8, +8,,28 +8,),... We will see, however, that i_(r) will
tend to a periodic waveform after a few periods.

Starting at =10 as in (a), we find /,(0+) = 10mA and i (1) = 0. The
exponential solution is drawn in a solid line during 0<7<§, and in a
dotted line thereafter in Fig. 3.8d to emphasize the relative magnitudes of
T and §,.

To determine i,(8,+)=1i,(1+), it is necessary to write the solution
i,(t) =10 exp(—¢/10) in order to calculate i,(1—) =9.05 mA. This gives us
i,(1-)=i(1-)-i,(1-)=10-9.05=0.95mA. Since i, (1+)=i,(1-)=
0.95mA, i,(1+)=i(1+)— i, (1+)=-5-0.95= -5.95mA. Hence i,(1)
jumps from 9.05 to —5.95mA at =1 us, as shown in Fig. 3.84.

Again, the exponential solution during [1, 4) has not reached steady
state when 7,(f) changes from —5 to 10 mA at t =4 us. To calculate i (¢) at
=4+, it is necessary to write the solution i (#)= —5.95exp{—[(r—
1)/10]} and obtain i,(4-)= -4.41mA. This gives i,(4+)=i,(4-)=
i(4-)—i,(4-)=-5-(-441)=-059mA and i,(4+)=i(4+)—
i (4+)=10-(-0.59)=10.59mA. Hence i,(f) jumps from —4.41 to
10.59 mA at t =4 us, as shown in Fig. 3.84.

Repeating the above procedure, we find i (¢) jumps from 9.6 to
—5.4mA at t=5 us, from —4.0 to 11.0mA at r=8 us, from 9.96 to
—5.04mA att=9 us, from —3.74 to 11.26 mA at r= 12 us, from 10.20 to
—4.8mA at +=13 ps, and from —3.6 to 11.4mA at =16 us, etc., as
shown in Fig. 3.8d.

It is clear from Fig. 3.8d that i,(#) is tending toward a periodic
waveform. To determine this periodic waveform, note that if we let I,
denote the “peak” value of each *“‘falling” exponential segment in Fig. 3.8d
(e.g., 1,=10, 10.59, 11, 11.26, and 11.4mA at r=0, 4, 8, 12, 16 us, etc.)
then this periodic waveform must satisfy the following periodicity con-
dition:

-8 -
Ioexp—‘rﬁl = lSexp—;—l +15=1,
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where 8, =1 us, 8, =3 us, and 7 =10 us. The solution of this equatig,
gives one point on the periodic solution, namely, the peak value.
Exercise

(2) Calculate the peak value I, from the periodicity condition.

(b) Specify the initial inductor current i,(0) in Fig. 3.8a so that the
solution £(¢) is periodic for r=0.

(c) Sketch this periodic solution.

3.3 Linear Time-Invariant Circuits Driven by an Impulse

Consider the RC circuit shown in Fig. 3.9a and the RL circuit shown in Fig,
3.9b. Let the input voltage source v (f) and input current source i.(f) be ,
square pulse p,(r) of width A and height 1/A, as shown in Fig. 3.9¢. Assumip,
zero initial state [i.e., v.(0—) =0, i, (0—) =0}, the response voltage v.() ang
current i,(t) are given by the same waveform shown in Fig. 3.9d, wher,
7= RC for the RC circuit and = GL for the RL circuit, and

1—exp(—A/7) a f(A)
A B

hy(a) 2

The input and response corresponding to A =1, 3, and 5 s are shown in Fig,
3.9¢ and f, respectively. Note that as A—0, p,(¢) tends to the unit impuis,
shown in Fig. 3.9g [recall Eq. (2.8)], namely,

lim pa(r) = 8(1) (3.22)

Note also that the “peak” value h,(A) of the response waveform in Fig,
3.9d increases as A decreases. To obtain the limiting value of h,(A) as A—,
we apply L’Hospital's rule:

; _n fA) . (Ur)exp(-Aln) 1
S b=l = A 1 B

(3.23)
Hence, the response waveform in Fig. 3.9f tends to the exponential waveform

lfcx (——5) t>0
hR()=47 P\"%

3.4
" <0 (3.29)

shown in Fig. 3.9h. Using the unit step function 1(t) defined earlier in Eq,
(2.6), we can rewrite Eq. (3.24) as follows:

h(t) = 1{ exp (”7’) 1(9) (3.24)
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Figure 3.9 As A—0, the square pulse in (c) tends to the wnit impulse 8(-) in (g). The
corresponding response tends to the impulse response h(t) in (h).

Because A(r) is the response of the circuit when driven by a unit impulse
under zero initial condition, it is called an impulse response. Note that h(t) =0

for r<0.
In Chap. 10, we will show that given the impulse response of any linear
time-invariant circuit, we can use it to calculate the response when the circuit is

driven by any other input waveform.
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3.4 Circuits Driven by Arbitrary Signals

Let us consider now the general case where the one-port N in Fig. 3.1 Contayy,
arbitrary independent sources. This means that the Thévenin equivalent VOltf
age sOurce Unc(f), or the Norton equivalent current source isc(f), in Fig, 17
can be any function of time, say, in practice, a piecewise-continuous fUHCtic;n
of time: square wave, triangular wave, synchronization signal of a TV se, ete
Our objective is to derive an explicit solution and draw the consequences,
Consider: first the RC circuit in Fig. 3.2a whose state equation is

_ UC_([) " Uoclt)

ﬁc(t) = 1_ (3.25)

where 72 i
Explicit solution for first-order linear time-invariant RC circuits Given any

prescribed waveform v, (), the solution of Eq. (3.25) corresponding to any
initial state v.(t,) at t = ¢, is given by

—(t—1 1 —(t—t
ve(t) = veltg) exp 2+ [ L exp ZEED u ey

5 5 ) (3.26)
zero-input response zero-state response
for all =, Here, 7=RC.
Proor
(a) At t=1,, Eq. (3.26) reduces to
UC(!)L::U = vellty) (3.27)

Hence Eq. (3.26) has the correct initial condition.
(b) To prove that Eq. (3.26) is a solution of Eq. (3.25), let us differentiate
both sides of Eq. {3.26) with respect to t: First we rewrite Eq. (3.26) as

‘ ]

—(1—t 1 —t t o
el = velto) exp L 4 (1 exp ) | exp - vocll) di
(3.28)

Then upon differentiating we obtain for >0,

i 1 —(t—1,) ( 1 ~t)
= — — e o —_

velf) T velty) exp - 7 eXP

S o (1 —t)[ t ]
XJ:ﬂexp; Uoclth) dt’ + Sexp— j|exp voc(f)| (3.29)
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where we used the fundamental theorem of calculus:
d 4
ar L fie'ydr = f(r)  if f(-) is continuous at time ¢

Simplifying Eq. (3.29), we obtain

Je(t) =~ % velty) exp —(t;— )
LET° 1 i Ut
e [ s exp_('{_,;t—) Voc(t') df,} + % Voc(t)
__ve(D) | voclr)
S Al (3.30)

Hence Eq. (3.26) is 2 solution of Eq. (3.25).
(c) From mathematics we learned that the differential equation (3.25) has
a unique solution. Hence Eq. (3.26} is indeed the solution. ]

Zero-input response and zero-state response The solution (3.26) consists of two
terms. The first term is called the zero-input response because when all
independent sources in N are set to zero, we have vy(t) = 0 for all times, and
vc(?) reduces to the first term only. The second term is called the zero-state
response because when the initial state v(1,) =0, v.(f) reduces to the second
term only.

Example Let us find the solution v () of Fig. 3.7a using the above general
formula. In this case, we have

ve(ty) =0  1,=0 and vo()=E t=0

Substituting these parameters into Eq. (3.26), we obtain
) ICEDY N W (5151
vc(t)—(]xexp[ = ! S €Xp 3 E dt

——gex (—L)J'J X fiah"——gex (—i)(ex I—1)
_‘T p T OepT _T p T p'l" %

=E[1—~exp(— 5)] £20 (3.31)

which coincides with that shown in Fig. 3.7¢, as it should,

By duality, we have the following:
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Explicit solution for first-order linear time-invariant RL circuit Give

. . ’ S
prescribed waveform ig.(f), the solution of Eq. (3.26) corresponding 1, ¥
initial state i,(,) at t = ¢, is given by an

_ ‘ —(t—t,) | =E=E) .
i (8)=1i.(t) exp—'-r—o— + - % exp _T—) isc(t') dr’

. — (332}
zero-input response Zero-state response

for all t=1¢,. Here, 7= G, L.

REMARKS
1. In both Egs. (3.26) and (3.32), the zero-input response does not depeng
on the inputs and the zero-state response does not depend on the ipjgy
condition. In both cases, the total response can be interpreted ag the
superposition of two terms, one due to the initial condition acting algg,
(with all independent sources set to zero) and the other due to the inpy
acting alone (with the initial condition set to zero).
2. Formulas (3.26) and (3.32) are valid for both 7 >0 and 7 <0. Congjgy,
the stable case 7>0. For values of ¢’ such that :—1t'> 1, the factor
exp[—(t — t')/7} is very small; consequently the values of uoc(f) [respec.
tively, ig.(#)] for such times contribute almost nothing to the integra] iy
Eq. (3.26) [respectively, Eq. (3.32)]. In other words, the stable RC circyj
(respectively, the stable RL circuit) has a fading memory: Inputs that hay,
occurred many time constants ago have practically no effect at the presen
time.

Thus we may say that the time constant 7is a measure of the memory
time of the circuit.
3. Using the impuise response h(t) for the RC circuit derived earlier in Eg,
(3.24), we can rewrite the zero-state response in Eq. (3.26) as follows:

L} h(t =t ) voc(t) dr (3.33)

Equation (3.33) is an example of a convolution integral to be developed in
Chap. 10.

4. Once v(t) is found using Eq. (3.26), we can replace the capacitor in
Fig. 3.2a by an independent voltage source described by v (f). We can
then apply the substitution theorem to find the corresponding solutior
inside N by solving the resulting linear resistive circuit using the methods
from the preceding chapters.

5. The zero-state response due to a unit step input 1(¢) is called the step
response, and will be denoted in this book by s(f). The step response for
a first-order RC (respectively, RL) circuit can be found by the inspection
method in Sec. 3.1C, upon choosing v(0) =0 (respectively, i;(0}=0).
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The significance of the step response is that for any linear time-
invariant circuit, the impulse response h(t) needed in the convolution
integral (6.5) of Chap. 10 can be derived from s(z) (which is usually much
easier to derive) via the formula
ds(o)

dt
This important relationship is the subject of Exercise 1 in Chap. 10, page
615 [Eq. (4.64)].

h(t) = (3.34)

The dual remark of course applies to the RL circuit in Fig. 3.2b.

4 FIRST-ORDER LINEAR SWITCHING CIRCUITS

Suppose now that the one-port N in Fig. 3.1 contains one or more switches,
where the state (open or closed) of each switch is specified for all t=1¢,.
Typically, a switch may be open over several disjoint time intervals, and closed
during the remaining times. Although a switch is a timme-varying linear resistor,
such a linear switching circuit may be analyzed as a sequence of first-order
linear time-invariant circuits, each one valid over a time interval where all
switches remain in a given state. This class of circuits can therefore be analyzed
by the same procedure used in the preceding section. The only difference here
is that unlike Sec. 3, the time constant 7 will generally vary whenever a switch
changes state, as demonstrated in the following example.

Example Consider the RC circuit shown in Fig. 4.1a, where the switch § is
assumed to have been open for a long time prior to t=0.

Given that the switch is closed at ¢t =15 and then reopened at t =2s,
our objective is to find v.(f) and v (¢) for all t=0.

Since we are only interested in v.(¢) and v,(f), let us replace the
remaining part of the circuit by its Thévenin equivalent circuit. The result
is shown in Fig. 4.1 and c corresponding to the case where § is “open” or
“closed,” respectively. The corresponding time constant is 7,=1s and
7, = 0.9 s, respectively.

Since the switch is initially open and the capacitor is initially in
equilibrium, it follows from Fig. 4.1b that v(f)=6V and v,(t) =0 for
t=1s. Attr=1+ we change to the equivalent circuit in Fig. 4.1c. Since, by
continuity, v-(1+)=v(1-)=6V, we have i.(1+)=(10-6)V/(2+
1.6) k2=1.11mA and hence v, (1+)=(1.6kQ)(1.11 mA)=1.78 V.

To determine v(r,) and v,(t.) for the equivalent circuit in Fig. 4.1c,
we open the capacitor and obtain v(t,)) = 0. The waveforms of v(r) and
v,(t) during [1, 2) are drawn as solid lines in Figs. 4.1d and e, respectively.
The dotted portion shows the respective waveform if § had been left closed
for all t=1s. ‘

Since § is closed at =25, we must write the equation of these two
waveforms to calculate v(2-)=8.68 V and v,(2~-)=0.59 V.
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Figure 4.1 An RC switching circuit and the solution waveforms corresponding to the case where §
is open during t<1s and r=2s, and closed during 1s7<2.

At t=2+, we return to the equivalent circuit in Fig. 4.1b. Since
v(2+)=v.(2-)=8.68V, we have i(2+) = (6 — 8.68)V/(2.4 + 1.6) k=
—0.67 mA and v,(2+)= (1.6 kQ)(—0.67mA)=—1.07V,

To determine v.(¢,) and v,(z,) for the circuit in Fig. 4.1b, we open
the capacitor and obtain v.(t,) =6V and v (¢,,) =0. The remaining solut-
ion waveforms are therefore as shown in Figs. 4.1d and e, respectively,

5 FIRST-ORDER PIECEWISE-LINEAR CIRCUITS

Consider the first-order circuit shown in Fig. 5.1 where the resistive one-port N
may now contain nonlinear resistors in addition to linear resistors and dc
sources. As before, all resistors and the capacitor are time-invariant. This class
of circuits includes many important nonlinear electronic circuits such as
multivibrators, relaxation oscillators, time-base generators, etc. In this section,
we assume that all nonlinear elements inside N are piecewise-linear so that the
one-port N is described by a piecewise-linear driving-point characteristic.
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Figure 5.1 (a) A piecewise-linear RC circuit. () Driving-point characteristic of N.

Our main problem is to find the solution v () for the RC circuit, or i, (¢)
for the RL circuit, subject to any given initial state. Since the corresponding
port variables of N, namely, [v(¢), i(t)], must fall on the driving-point charac-
teristic of N, the evolution of [v(f), i(¢)] can be visualized as the motion of a
point on the characteristic starting from a given initial point.

5.1 The Dynamic Route

Since the driving-point characteristic is piecewise-linear, the solution [v(r), i(f)]
can be found by determining first the specific “route” and “‘direction,”
henceforth called the dynamic route, along the characteristic where the motion
actually takes place. Once this route is identified, we can apply the “inspection
method” developed in Sec. 3.1 to obtain the solution traversing along each
segment separately, as illustrated in the following examples.

Example 1 Consider the RC circuit shown in Fig. 5.1a, where the one-port
N is described by the voltage-controlled piecewise-linear characteristic
shown in Fig. 5.1b.

Given the initial capacitor voltage v.(0) =2.5V, our objective is to
find v(¢) for all +=0.

Step 1. Identify the initial point. Since v(f) =v(r), for all ¢, initially
v(0) =v.(0)=2.5V. Hence the initial point on the driving-point
characteristic of N is P, as shown on Fig. 5.1b.

Step 2. Determine the dynamic route. The dynamic route starting from P,
contains two pieces of information: (@) the route traversed and (b) the
direction of motion. They are determined from the following infor-

mation:

Key to (a) The driving-point characteristic of N
dynamic route

for RC i(t)

circuit (b) (1) =- C
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Since 0(t) = —i(t)/C <0 whenever i(r) >0, the voltage v(r) decreqse,
so long as the associated current i(r) is positive. Hence, for i(t) >0, the
dynamic route starting at P, must always move along the v-i cupy,
toward the left as indicated by the bold directed line segments P, — P,
and P,— P, in Fig. 5.1b. The dynamic route for this circuit ends at p
because at Pz, i =0, so ¥ =0. Hence the capacitor is in equlhbrmm2

Step 3. Obtain the solution for each straight line segment. Replace N by z;
sequence of Thévenin equivalent circuits corresponding to each lipg
segment in the dynamic route. Using the method from Sec. 3.1, find ,
sequence of solutions v.(¢). For this example, the dynamic roy,
P,— P,— P, consists of only two segments. The corresponding equiy.
alenl circuits are shown in Fig. 5.24 and b, respectively.

To obtain v.(t) for segment Py— P, we calculate 7= —62.5 y5
vC(O) 2.5V, and v (1,.)=3.25V. Smce the time constant in this cage
is negative, v-(t) consists of an “‘unstable’” exponential passing throug
v-(0) = 2.5V and tending asymptotically to the “unstable” equilibrium
value v.(7,) =3.25V as r— —o. This solution is shown in Fig. 52,
from P, to P,. To calculate the time ¢, when v(¢) =2V, we apply Eq
(3.12) and obtain

_ 2.5V—3.25V]_ﬂ
{,—0=062.5 “SXIH[——ZV——S.ZSV =31.9 us (5.1)

Applying Eq. (3.5), we can write the solution from P, to P, analytica].
ly as follows (all voltages are in volts):

r= 100 us (Stable case)

1l
!
@
Lh
x
T

Ve

|

+ 1, us
5 N 200 300

(c)

Figure 5.2 (a) Equivalent circuit corresponding to P,— P,. {b) Equivalent circuit corresponding to
P,— P,. (c) Solution v.(?).
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belt) = 3,25+ [2.5 — 3.25] exp éis us

=325-075expoc us  0=r=319us  (52)

To obtain v(f) for segment P,— P,, we calculate =, =100 us,
(1) =2V, t, =319 pus, and v(z.) =0V. The resulting exponential
solution is shown in Fig. 5.2¢. Applying Eq. (3.5), we can write the
solution from P, to P, analytically as follows:

—t—31.9 us

ve(t)=2exp 100 s 1=31.9 us (53)

Example 2 Consider the RL circuit shown in Fig. 5.3a, where N is
described by the piecewise-linear characteristic shown in Fig. 5.3b.

Given the initial inductor current i, (t,) = —1I,, our objective is to find
i, () for all t=¢,. (Note [, is the initial current into the one-port).

Step 1. Identify initial point. Since i(t,) = I,, we identify the initial point at
P, on Fig. 5.3b.

Step 2. Determine the dynamic route. The dynamic route starting from P,
is determined from the following information:

u N

tnle
L]

=~
~

f<o

wheneverv >0 (a)

Figure 5.3 A piecewise-linear RL. circuit.
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Key to (a) The driving-point characteristic of N
dynamic route

for RL v(t)

circuit (b) ( )_

Since i.(t) = —p(1)/L <0 whenever v(f) >0, it follows that the currepy
solution i(#) must decrease so long as the associated v(t) is positive
Hence the dynamic route from P, must always move downward ang
consists of three segments P,— P,, P,— P,, and P,— P, as shown ip
Fig. 5.3b. The dynamlc route ends at P, because at P;, v =0so0 1-0
Hence the inductor is in equilibrium.

Step 3. Replacing N by a sequence of Norton equivalent circuits corres-
ponding to each line segment in the dynamic route, we obtain the
solution in Fig. 5.3¢ by inspection.

REMARKS

1. After some practice, one can obtain the solution in Figs. 5.2¢ and 5.3,
directly from the dynamic route, i.e., without drawing the Thévenin or
Norton equivalent circuits,

2. In the RC case, since 0(f) = —i(f)/C, when 7>0, the dynamic route
always terminates upon intersecting the v axis (i =0).

3. In the RL case, since 1(t) = —u(#)/L, when 7 >0, the dynamic route
always terminates upon intersecting the i axis (v =0).

Exercise

(a) Calculate the time constants 7, 7,, and 7, in Fig. 5.3c.
(b) Calculate r, and ¢,.

(¢) Write the solution /, (t) analytically for ¢ =¢,.

(d) Write the solution v, (t) analytically for £=1¢,.

5.2 Jump Phenomenon and Relaxation Oscillation

Consider the RC op-amp circuit shown in Fig. 5.4a. The driving-point charac-
teristic of the resistive one-port N was derived earller in Fig. 3.8b of Chap. 4
and is reproduced in Fig. 5.4b for convenience.”” Consider the four different
initial points Q,, Q,. @, and @, (corresponding to four different initial
capacitor voltages at ¢ =0) on this characteristic. Since 5(¢) = 0(t) = —i(r)/C
and C >0, we have

U(t)>0  for all ¢ such that i(£) <0 (5.40q)

*! In order to use the v-i curve directly, we will find i(¢) first. The desired solution is then simply
i {t)y=—ir).

* Note that we have relabeled the two resistors R, and R, in Fig. 3.8b of Chap. 4 as R, and R,
respectively, in Fig. 5.4a. The symbols R,. R,, and R, in Fig. 5.4 denote the reciprocal slope-of
segments 1, 2, and 3, respectively, in Fig. 5.4b.
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(A
Sﬁ/@‘“i“/’ Ry
14}
5(1) > 0 whenever i(r) < 0

B(1) < 0 whenever i(1) > 0
%)

Figure 5.4 (¢) RC op-amp circuit. (b} Driving-point characteristic of N. (¢) Solution locus of
{u(r), i(1)) for the remodeled circuit. (d) Dynamic route for the limiting case. (¢) Voltage waveform
v(t), (f) Current waveform i(t).

and 5(f)<0  for all ¢ such that i(£) >0 (5.4b)

Hence the dynamic route from any initial point must move toward the left in the
upper half plane, and toward the right in the lower half plane, as indicated by
the arrow heads in Fig. 5.4b.
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Since i #0 at the two breakpoints Q , and Qp, they are not equilibriyp,
points of the circuit. It follows from Eq. (3.12) that the amount of time T,
takes to go from any initial point to Q , or Q is finite [because x{r,) # x(t,)).

Since the arrowheads from Q, and Q, (or from Q, and Q,) are 0ppositely
directed, it is impossible to continue drawing the dynamic route (from any
initial point P,) beyond @, or Q.. In other words, an impasse is reacheq
whenever the solution reaches Q , or Qp.

Any circuit which exhibits an impasse is the result of poor modeling. Fq,
the circuit of Fig. 5.4a, the impasse can be resolved by inserting a small liney,
inductor in series with the capacitor; this inductor models the inductance [ of
the connecting wires.

As will be shown in Chap. 7, the remodeled circuit has a well-defined
solution for all +=0 so long as L >0. A typical solution locus of (u(r), i(1))
corresponding to the initial condition at Py is shown in Fig. 5.4c. Our analysig
in Chap. 7 will show that the rransition time from P, to P,, or from P, to p,_
decreases with L. In the limit L. — 0, the solution locus tends to the limiting
case shown in Fig. 5.4d with a zero transition time. In other words in the limj;
where L decreases to zero, the solution jumps from the impasse point P, to B,
and from the impasse point P, to P,. We use dotted arrows to emphasize the
instantaneous transition.

Both analytical and experimental studies support the existence of a jump
phenomenon, such as the one depicted in Fig. 5.4d, whenever a solution
reaches an impasse point such as P, or P;. This observation allows us to state
the following rule which greatly simplifies the solution procedure.

Jump rule

Let Q be an impasse point of any first-order RC circuit
(respectively, RL circuit). Upon reaching O at ¢ = T, the dynamic
route can be continued by jumping (instantaneously) to another
point Q' on the driving-point characteristic of N such that
ve(T+)=v.(T—) [respectively, i, (T+)=1i,(T—)] provided Q'
is the only point having this property.

Note that the jump rule is also consistent with the continuity property of v, or

iy

OBSERVATIONS

1. The concepts of an impasse point and the jump rule are applicable
regardless of whether the driving-point characteristic of N is piecewise-
linear or not.

2. A first-order RC circuit has at least one impasse point if N is described
by a continuous nonmonotonic current-controlled driving-point characteris-
tic. The instantaneous transition in this case consists of a vertical jump in
the v-i plane, assuming / is the vertical axis.
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3. A first-order RL circuit has at least one impasse point if N is described
by a continuous nonmonotonic voltage-controlled driving-point characteris-
tic. The instantancous transition in this case consists of a horizontal jump
in the v-i plane, assuming 7 is the vertical axis.

4. Once the dynamic route is determined, with the help of the jump rule,
for all t > t, the solution waveforms of v(r) and i(r) can be determined by
inspection, as illustrated below.

Example The solution waveforms v(¢#) and i(f) corresponding to the initial
point P, in Fig. 5.4c can be found as follows:

Applying the jump rule at the two impasse points P, and P,, we obtain
the closed dynamic route shown in Fig. 5.4d. This means that the solution
waveforms become periodic after the short transient time interval from P,
to P,. Since the two verfical routes occur instantaneously, the period of
oscillation is equal to the sum of the time it takes to go from P, to P, and
from P, to P,.

Following the same procedure as in the preceding examples, we obtain
the voltage waveform v(-) shown in Fig. 5.4¢ and the current waveform
i(-) shown in Fig. 5.4f. As expected, these solution waveforms are periodic
and the op-amp circuit functions as an osciflator.

Observe that the oscillation waveforms of v(¢) and i(¢) are far from
being sinusoidal. Such oscillators are usually called relaxation oscillators™

Exercise

(@) Find the time constants 7,, 7,, 75, and the time instants ¢, f,, and f,
indicated in Fig. 5.4e and f in terms of the element values in Fig. 5.4a.
{Assume the ideal op-amp model.)

(b) Use the v,-vs.-v, transfer characteristic derived earlier in Fig. 3.8¢ of
Chap. 4 to show that the op-amp output voltage waveform v,(-) is a
square wave of period T. Calculate 7T in terms of the element parameters.

5.3 Triggering a Bistable Circuit (Flip-Flop)

Suppose we replace the capacitor in Fig. 5.4a by the inductor-voltage source
combination as shown in Fig. 5.5a. Consider first the case where v (=050
that the inductor is directly connected across N. Since z(t)* —U(t)/L and
L >0, it follows that di/dt >0 whenever v <0 and di/dt <0 whenever v >0,
Hence the current i decreases in the right half v-i plane and increases in the left
half v-i plane, as depicted by the typical dynamic routes in Fig. 5.5b.

Since the equilibrium state of a first-order RL circuit is determined by
replacing the inductor by a short circuit, i.e., v = v, =0, it follows that this

> Historically, relaxation oscillators are designed using only two vacuum tubes, or two
transistors, such that one device is operating in a “cut-off” or relaxing mode, while the other device
is operating in an “active” or “‘saturation” mode.
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Figure 5.5 A bistable op-amp circuit and the dynamic routes corresponding to two typical
triggering signals.
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circuit has three equilibrium points; namely, Q,, @,, and Q,. These equilib-
rium points are the operating points of the associated resistive circuit obtained
by short-circuiting the inductor L.

Since the dynamic route in Fig. 5.5b either tends to Q, or Q,, but always
diverges from (2,, we say that the equilibrium point Q, is unstable. Hence even
though the associated resistive circuit has three operating points, Q, can never
be observed in practice—the slightest noise voltage will cause the dynamic
route to diverge from @,, even if the circuit is operating initially at Q,.

Whether Q, or {2, is actually observed depends on the initial condition.
Such a circuit is said to be bistable. '

Bistable circuits (flip-flops) are used extensively in digital computers,
where the two stable equilibrium points correspond to the two binary states;
say (0, denotes “1” and Q; denotes “0.” In order to perform logic operations,
it i1s essential to switch from O, to O, and vice versa. This is done by using a
small triggering signal. We will now show how the voltage source in Fig. 5.5a
can serve as a triggering signal.

Suppose initially the circuit is operating at (J,. Let us at t=1, apply a
square pulse of width T = ¢, — t, as shown in Fig. 5.5¢. During the time interval
t,<t<t,, vt) can be replaced by an E-V battery, so that the inductor sees a
translated driving-point characteristic as shown in Fig. 5.5d in broken line
segments. Let us denote the original and the translated piecewise-linear
driving-point characteristics by I' and I'" respectively. Then I' holds over the
time intervals <, and ¢>¢,, whereas I'" holds over the time interval
Lt

Since the inductor current cannot change instantaneously [f,(¢,—)=
i (t;+)], the dynamic route must jump horizontally from , to P, at time
t=1t,. From P,, the current { must subsequently decrease so long as v>0.
Hence, the dynamic route will be as indicated (Q,— P,— P,— P,— P,— P,)
in Fig. 5.5d. Here, we assume that at time ¢ = ¢,—, the dynamic route arrives at
some point P, in the lower half plane. At time ¢ =t,+, I"" switches back to T,
and the dynamic route must jump horizontally from P, to P at 1 = ¢,+. After
approximately five time constants, the dynamic route has essentially reached

Q,, and we have succeeded in triggering the circuit from equilibrium point O,
to equilibrium point Q,.

To trigger from @, back to Q,, simply apply a similar triggering pulse of
opposite polarity, as shown in Fig. 5.5e. The resulting dynamic route is shown
in Fig. 5.5f.

Triggering criteria The following two conditions must be satisfied by the
triggering signal in order to trigger from Q, to ;, or vice versa.

Minimum pulse width condition If !, occurs before the dynamic route in Fig.
5.5d (respectively, f) crosses the v axis at P,, the route will jump (horizontally)
to a point on I in the upper left half plane (respectively, lower right half plane)
and return to Q, (respectively, 0,). Hence, for successful triggering, we must
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require 7> T, where T, is the time it takes to go from P, to P, in Fig
5.5d or f. '
Minimum pulse height condition 1f E is too small such that the breakpoint P, o,
I'" is located in the left half plane, (respectively, the right half plane), then th,
dynamic route will also return to Q, (respectively, Q). Hence, for successfy)
triggering, we must require E> E_, , where E , = E|.

Exercise

(a) Express T, and E_; in terms of the circuit parameters.

(b) Sketch the solution waveforms of i(#) and v () for the case whey
T=15T,_ and E=1.5E

min min*

(c) Repeat (b) for the case where T=0.5T,_, and E=0.5E ;..

e A two-terminal element de-

scribed by a g-v characteristic
folgq,v)=0 is called a time-
invariant capacitor.

In the special case where g = Cu,
where C is a constant called the
capacitance, the capacitor is
linear and time-invariant. In this
case, it can be described by

. o U
I—Cdr

or

o(t) = v(t,) + % J:; i(r) dr
A linear time-varying capacitor is
described by
g = C(t)v
This implies that

i) = C(t) i‘:% " d—i&—’l o(t)

requires an additional term com-
pared to the time-invariant case.

e A two-terminal element de.

scribed by a ¢-i characteristic
fi{d,i)=0 is called a fime.
invariant inductor.

In the special case where ¢ = [
where L is a constant called the
inductance, the inductor is linegr
and time-invariant. In this case,
it can be described by

U=La“;
or

i)y =i(ry) + % L v(r) dr

2]

A linear time-varying inductor is
described by

&= L(t)i
This implies that

v(t)= L(1) -d;g—:) + —d—l‘;—ﬂ i(r)

requires an additional term com-
pared to the time-invariant case.



