An Example Illustrating A Non-trivial Application of Tellegen's Theorem Consider the following 2 circuits N and \hat{N} . Let v_j and i_j denote the voltage and current of branch j of N. Let \hat{v}_j and \hat{i}_j denote the voltage and current of \hat{N} . The values of R_1 , R_2 and R_3 are not known in both circuits. But instead, $i_s = 1A$ and $v_L = 2V$ are given for N and $\hat{v}_s = 3V$ is given for \hat{N} . The problem is to find the voltage \hat{v}_L of \hat{N} . **Note**: Although the 2 circuits are different (N is driven by a voltage source, but \hat{N} is driven by a current source; the values of R_a and R_b are also different), they have the same digraph. Since the 2 digraph G and \hat{G} are identical, we can apply Tellegen's theorem to either digraph using **any set** of voltages which satisfy KVL for N, and **any set** of currents which satisfy KCL for \hat{N} , and vice versa, paying attention that we must use Associated Reference Convention: For $$N: v_4 = 2V$$, $i_4 = -1A$ For $$\hat{N}: \hat{v}_4 = 3V, \quad \hat{i}_4 = -1A$$ (a) Applying Tellegen's Theorem using the voltage solutions v_j for N (which must satisfy KVL) and the current solutions \hat{i}_j (which must satisfy KCL) for \hat{N} : $$(v_1)(\hat{i}_1) + (v_2)(\hat{i}_2) + (v_3)(\hat{i}_3) + (v_4)(\hat{i}_4) + (v_5)(\hat{i}_5) = 0$$ $$\Longrightarrow I = \sum_{j=1}^{3} (v_j) (\hat{i}_j) + (2) (-1) + (2) (\frac{\hat{v}_L}{2}) = 0$$ (1) (b) Applying Tellegen's Theorem using the voltage solutions \hat{v}_j for \hat{N} (which must satisfy KVL) and the current solutions i_j (which must satisfy KCL) for N: $$(\hat{v}_1)(i_1) + (\hat{v}_2)(i_2) + (\hat{v}_3)(i_3) + (\hat{v}_4)(i_4) + (\hat{v}_5)(i_5) = 0$$ $$\hat{I} = \sum_{i=1}^{3} (\hat{v}_j)(i_j) + (3)(-1) + (\hat{v}_L)(2) = 0$$ (2) Observe $$I = \sum_{i=1}^{3} (v_j) (\hat{i}_j) = (R_1 i_1) (\hat{i}_1) + (R_2 i_2) (\hat{i}_2) + (R_3 i_3) (\hat{i}_3)$$ (3) $$I = \sum_{i=1}^{3} (\hat{v}_{j}) (i_{j}) = (R_{1} \hat{i}_{1}) (i_{1}) + (R_{2} \hat{i}_{2}) (i_{2}) + (R_{3} \hat{i}_{3}) (i_{3})$$ (4) $$\Rightarrow I = \hat{I}$$ Substracting (1) - (2): $$\left[(2) (-1) + (2) (\frac{\hat{v}_L}{2}) \right] - \left[(3)(-1) + (\hat{v}_L) (2) \right] = 0$$ $$-2 + \hat{v}_I + 3 - 2\hat{v}_I = 0$$ $$\Rightarrow \hat{v}_L = 1V$$