Closed node sequence

Definition:

A sequence of node $\{n_a, n_b, ..., n_j, ..., n_k, ..., n_m\}$ is said to form a **closed node sequence** iff

- 1. $n_a = n_m$
- 2. $n_j \neq n_k$, for all $j \neq a$ and $k \neq m$

Remarks:

We do not require that there be a 2-terminal circuit element present between any consecutive pair of nodes belonging to a closed node sequence.

Kirchhoff Current Law (KCL)

The algebraic sum of all currents leaving a Gaussian surface is equal to zero at all times.

KCL

Corollary 1 (KCL at nodes)

Algebraic sum of all currents leaving any node is equal to zero at all times.

KCL

Corollary 2 (KCL at cut sets)

Algebraic sum of all currents leaving a cut set is equal to zero at all times.

KCL

Corollary 3

(KCL at n-terminal device)

Algebraic sum of all currents leaving all terminals of an n-terminal device is equal to zero at all times.

$KCL \Rightarrow$ $\tilde{l}_1 + \tilde{l}_2$ N. S. W.

Instantaneous Power

$$vi = \frac{dw}{dq} \frac{dq}{dt} = \frac{dw}{dt}$$

hence the rate of change of energy, or the power p; \hat{o} Since w represents energy, dw/dt represents

$$p(t) = v(t)i(t)$$
 , watts (W)

6 Fundamental Circuit Variables

Flux	Charge	Energy	Power	Voltage	Current
$\varphi(t) = \int_{-\infty}^{t} \nu(\tau) d\tau$	$q(t) = \int_{-\infty}^{t} i(\tau) d\tau$	$w(t) = \int_{-\infty}^{t} p(\tau) d\tau = \int_{-\infty}^{t} v(\tau) i(\tau) d\tau$	$p(t) = v(t) i(t) = \frac{dw(t)}{dt}$	$v(t) = \frac{d\varphi(t)}{dt}$	$i(t) = \frac{dq(t)}{dt}$
Weber	Coulomb (C)	Watt-Hour	Watt (W)	Volt (V)	Ampere (A)