EECS 43 Spring 2005
Op Amps


EE43 Theory:  Op-Amps

1. Objective

The purpose of these experiments is to introduce the most important of all analog building blocks, the operational amplifier (“op-amp” for short).  This handout gives an introduction to these amplifiers and a smattering of the various configurations that they can be used in.  Apart from their most common use as amplifiers (both inverting and non-inverting), they also find applications as buffers (load isolators), adders, subtractors, integrators, logarithmic amplifiers, impedance converters, filters (low-pass, high-pass, band-pass, band-reject or notch), and differential amplifiers. So let’s get set for a fun-filled adventure with op-amps!

2. Introduction: Amplifier Circuit

Before jumping into op-amps, let’s first go over some amplifier fundamentals. 

An amplifier has an input port and an output port.  (A port consists of two terminals, one of which is usually connected to the ground node.)  In a linear amplifier, the output signal = A ( input signal, where A is the amplification factor or “gain.” Depending on the nature of the input and output signals, we can have four types of amplifier gain: voltage gain (voltage out / voltage in), current gain (current out / current in), transresistance (voltage out / current in) and transconductance (current out / voltage in). Since most op-amps are used as voltage-to-voltage amplifiers, we will limit the discussion here to this type of amplifier.  

The circuit model of an amplifier is shown in Figure 1 (center dashed box, with an input port and an output port). The input port plays a passive role, producing no voltage of its own, and is modeled by a resistive element Ri called the input resistance. The output port is modeled by a dependent voltage source AVi in series with the output resistance Ro, where Vi is the potential difference between the input port terminals.  Figure 1 shows a complete amplifier circuit, which consists of an input voltage source Vs in series with the source resistance Rs, and an output “load” resistance RL.  From this figure, it can be seen that we have voltage-divider circuits at both the input port and the output port of the amplifier.  This requires us to re-calculate Vi and Vo whenever a different source and/or load is used:
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Figure 1:  Circuit model of an amplifier circuit.
3. The Operational Amplifier: Ideal Op-Amp Model

The amplifier model shown in Figure 1 is redrawn in Figure 2 showing the standard op-amp notation. An op-amp is a “differential-to-single-ended” amplifier, i.e., it amplifies the voltage difference Vp – Vn  = Vi at the input port and produces a voltage Vo at the output port that is referenced to the ground node of the circuit in which the op-amp is used.


[image: image4.wmf]V

i

R

i

AV

i

R

o

V

o

+

_

+

_

+

_

V

p

V

n

i

p

i

n

+

_

           
[image: image5.wmf]V

i

AV

i

V

o

+

_

+

_

+

_

V

p

V

n

+

_


Figure 2:  Standard op-amp                                    Figure 3:  Ideal op-amp

The ideal op-amp model was derived to simplify circuit analysis and it is commonly used by engineers for first-order approximate calculations. The ideal model makes three simplifying assumptions:

                                                 Gain is infinite: A = (
(3)

                                                 Input resistance is infinite: Ri = (
(4)

                                                 Output resistance is zero: Ro= 0
(5)
Applying these assumptions to the standard op-amp model results in the ideal op-amp model shown in Figure 3. Because Ri = ( and the voltage difference Vp – Vn = Vi at the input port is finite, the input currents are zero for an ideal op-amp:

                                                               in = ip = 0 
(6)

Hence there is no loading effect at the input port of an ideal op-amp:
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In addition, because Ro = 0, there is no loading effect at the output port of an ideal op-amp:

                                                             Vo = A ( Vi
(8)

Finally, because A = ( and Vo must be finite, Vi = Vp – Vn = 0, or

                                                               Vp = Vn
(9)

Note: Although Equations 3-5 constitute the ideal op-amp assumptions, Equations 6 and 9 are used most often in solving op-amp circuits.
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      Figure 4a:  Non-inverting amplifier           Figure 5a:  Voltage follower              Figure 6a:  Inverting amplifier
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      Figure 4b:  Voltage transfer curve             Figure 5b:  Voltage transfer curve        Figure 6b:  Voltage transfer curve

                         of non-inverting amplifier                            of voltage follower                                 of inverting amplifier
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  Figure 4c:  Realistic transfer curve             Figure 5c:  Realistic transfer curve        Figure 6c:  Realistic transfer curve

                    of non-inverting amplifier                             of voltage follower                                  of inverting amplifier

4. Non-Inverting Amplifier

An ideal op-amp by itself is not a very useful device, since any finite non-zero input signal would result in infinite output. (For a real op-amp, the range of the output signal amplitudes is limited by the positive and negative power-supply voltages – referred to as “the rails”.)  However, by connecting external components to the ideal op-amp, we can construct useful amplifier circuits.

Figure 4a shows a basic op-amp circuit, the non-inverting amplifier. The triangular block symbol is used to represent an ideal op-amp. The input terminal marked with a “+” (corresponding to Vp) is called the non-inverting input; the input terminal marked with a “–” (corresponding to Vn) is called the inverting input.

To understand how the non-inverting amplifier circuit works, we need to derive a relationship between the input voltage Vin and the output voltage Vout.  For an ideal op-amp, there is no loading effect at the input, so

                                                                    Vp = Vi
(10)
Since the current flowing into the inverting input of an ideal op-amp is zero, the current flowing through R1 is equal to the current flowing through R2 (by Kirchhoff’s Current Law -- which states that the algebraic sum of currents flowing into a node is zero -- to the inverting input node).  We can therefore apply the voltage-divider formula find Vn:
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From Equation 9, we know that Vin = Vp = Vn, so
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The voltage transfer curve (Vout vs. Vin) for a non-inverting amplifier is shown in Figure 4b. Notice that the gain (Vout / Vin) is always greater than or equal to one. 

The special op-amp circuit configuration shown in Figure 5a has a gain of unity, and is called a “voltage follower.”  This can be derived from the non-inverting amplifier by letting R1 = ( and 

R2  = 0 in Equation 12.  The voltage transfer curve is shown in Figure 5b.  A frequently asked question is why the voltage follower is useful, since it just copies input signal to the output. The reason is that it isolates the signal source and the load.  We know that a signal source usually has an internal series resistance (Rs in Figure 1, for example).  When it is directly connected to a load, especially a heavy (high conductance) load, the output voltage across the load will degrade (according to the voltage-divider formula).  With a voltage-follower circuit placed between the source and the load, the signal source sees a light (low conductance) load -- the input resistance of the op-amp.  At the same time, the load is driven by a powerful driving source -- the output of the op-amp. 

5. Inverting Amplifier

Figure 6a shows another useful basic op-amp circuit, the inverting amplifier. It is similar to the non-inverting circuit shown in Figure 4a except that the input signal is applied to the inverting terminal via R1 and the non-inverting terminal is grounded. Let’s derive a relationship between the input voltage Vin and the output voltage Vout. First, since Vn = Vp and Vp is grounded, Vn = 0.  Since the current flowing into the inverting input of an ideal op-amp is zero, the current flowing through R1 must be equal in magnitude and opposite in direction to the current flowing through R2 (by Kirchhoff’s Current Law):
                                                                  
[image: image18.wmf]2

1

R

V

V

R

V

V

n

out

n

in

-

=

-

 
(13)
Since Vn = 0, we have:
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The gain of inverting amplifier is always negative, as shown in Figure 6b.

6. Operation Circuit

Figure 7 shows an operation circuit, which combines the non-inverting and inverting amplifier. Let’s derive the relationship between the input voltages and the output voltage Vout.  We can start with the non-inverting input node.  Applying Kirchhoff’s Current Law, we obtain:
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Applying Kirchhoff’s Current Law to the inverting input node, we obtain:
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Since Vn = Vp (from Equation 9), we can combine Equations 15 and 16 to get
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where
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and
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Thus, this circuit adds VB1, VB2 and VB3 and subtracts VA1, VA2 and VA3.  Different coefficients can be applied to the input signals by adjusting the resistors.  If all the resistors have the same value, then
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Figure 7:  Operation circuit

7. Integrator

By adding a capacitor in parallel with the feedback resistor R2 in an inverting amplifier as shown in Figure 8, the op-amp can be used to perform integration. An ideal or lossless integrator (R2 = () performs the computation 
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. Thus, a square-wave input would cause a triangle-wave output. However, in a real circuit (R2 < () there is some decay in the system state at a rate proportional to the state itself. This leads to exponential decay with a time constant of ( = R2C. 
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Figure 8: Integrator

8. Differentiator

By adding a capacitor in series with the input resistor R1 in an inverting amplifier, the op-amp can be used to perform differentiation. An ideal differentiator (R1 = 0) has no memory and performs the computation 
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. Thus a triangle-wave input would cause a square-wave output. However, a real circuit (R1 > 0) will have some memory of the system state (like an lossy integrator) with exponential decay of time constant ( = R1C. 

9. Differential Amplifier

Figure 9 shows the differential amplifier circuit.  As the name suggests, this op-amp configuration amplifies the difference of two input signals.
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If the two input signals are the same, the output should be zero, ideally. To quantify the quality of the amplifier, the term Common Mode Rejection Ratio (CMRR) is defined.  It is the ratio of the output voltage corresponding to the difference of the two input signals to the output voltage corresponding to “common part” of the two signals. A good op-amp has a high CMRR.
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Figure 9: Differential amplifier
10. Frequency Response of Op-Amp

The “frequency response” of any circuit is the magnitude of the gain in decibels (dB) as a function of the frequency of the input signal.  The decibel is a common unit of measurement for the relative loudness of a sound or, in electronics, for the relative magnitude of two power levels. The expression for such a ratio of power is 




Power level in dB = 10log10(P1/P2)

 (A decibel is one-tenth of a "Bel", a seldom-used unit named for Alexander Graham Bell, inventor of the telephone.)  The voltage or current gain of an amplifier expressed in dB is 20 log10|G|, where G = Vout/Vin for voltage gain or Iout/Iin for current gain..  The frequency response of an op-amp has a low-pass characteristic (passing low-frequency signals, attenuating high-frequency signals), Figure 10.
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Figure 10: Frequency response of op-amp.

The bandwidth is the frequency at which the power of the output signal is reduced to half that of the maximum output power.  This occurs when the power gain G drops by 3 dB. In Figure 10, the bandwidth is B Hz.  For all op-amps, the Gain*Bandwidth product is a constant.  Hence, if the gain of an op-amp is decreased, its operational bandwidth increases proportionally. This is an important trade-off consideration in op-amp circuit design. In Sections 3 through 8 above, we assumed that the op-amp has infinite bandwidth.
10.  More on Op-Amps

All of the above op-amp configurations have one thing in common: there exists a path from the output of the op-amp back to its inverting input.  When the output is not “railed” to a supply voltage, negative feedback ensures that the op-amp operates in the linear region (as opposed to the saturation region, where the output voltage is “saturated” at one of the supply voltages).  Amplification, addition/subtraction, and integration/differentiation are all linear operations.  Note that both AC signals and DC offsets are included in these operations, unless we add a capacitor in series with the input signal(s) to block the DC component.
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