Warning!
Warning: I’m really loud!

Today.
One idea, from around 130 years ago.
At the heart of set theory.
Started a crisis in mathematics in the middle of the previous century!!!!!
The man who worked on this was described as:
▶ Genious?
▶ Renegade?
▶ Corrupter of youth?
▶ The King in the North?

The idea.
The idea: More than one infinities!!!!!!
The man:
Georg Cantor

Life before Cantor
How many elements in \{1, 2, 4\}? 3
How many elements in \{1, 2, 4, 10, 13, 18\}? 6
How many primes? Infinite!
How many elements in \(\N\)? Infinite!
How many elements in \(\N \setminus \{0\}\)? Infinite!
How many elements in \(\Z\)? Infinite!
How many elements in \(\R\)? Infinite!
What is this infinity though?
The symbol you write after taking a limit....
Don’t think about it....
Even Gauss: “I protest against the use of infinite magnitude as something completed, which is never permissible in mathematics. Infinity is merely a way of speaking, the true meaning being a limit which certain ratios approach indefinitely close, while others are permitted to increase without restriction.”

Cantor’s questions
Is \(\N \setminus \{0\}\) smaller than \(\N\)?
Is \(\N\) smaller than \(\Z\)? What about \(\Z^2\)?
Is \(\N\) smaller than \(\R\)?
Hilbert's hotel

A hotel with infinite rooms. Rooms are numbered from 1 to infinity. Every room is occupied. Room i has guest G_i.

G_0 shows up. What do we do?
Move G_1 to room number 2.

G_0 shows up. What do we do?
Move G_1 to room number 2.

And so on.

Now G_0 can go to room number 1!!

Moral of the story

Number of rooms: $\mathbb{N} \setminus \{0\}$
Number of guests: \mathbb{N}

$\mathbb{N} \setminus \{0\}$ is not smaller than \mathbb{N}.
$\mathbb{N} \setminus \{0\}$ is not bigger than \mathbb{N}. Why? Because it's a subset.
Therefore, $\mathbb{N} \setminus \{0\}$ must have the same number of elements as \mathbb{N}.
Is this a proof? How would we show this formally???

Countable.

Definition: S is countable if there is a bijection between S and some subset of \mathbb{N}.
If the subset of \mathbb{N} is finite, S has finite cardinality.
If the subset of \mathbb{N} is infinite, S is countably infinite.
Examples

Countably infinite (same cardinality as naturals)

- **E** even numbers.
 - Where are the odds? Half as big?
 - Enumerate: 0, 2, 4, ...
 - 0 maps to 0, 2 maps to 1, 4 maps to 2, ...
 - Enumeration naturally corresponds to function.
 - No two evens map to the same number.
 - For every natural, there is a corresponding even.
 - **Bijective:** \(f(e) = e/2 \).

- **Z** all integers.
 - Twice as big?
 - Enumerate: 0, 1, 2, 3, ...
 - When will we get to -1???
 - New Enumeration: 0, -1, 1, -2, 2...
 - **Bijective:** \(f(z) = 2|z| - \text{sign}(z) \).
 - Where \(\text{sign}(z) = 1 \) if \(z > 0 \) and \(\text{sign}(z) = 0 \) otherwise.

Examples: Countable by enumeration

- \(\mathbb{N} \times \mathbb{N} \): Pairs of integers.
 - Square of countably infinite?
 - Enumerate: \((0,0), (0,1), (0,2), \ldots ???? \)
 - Never get to \((1,1)\)
 - Enumerate: \((0,0), (1,0), (0,1), (2,0), (1,1), (0,2) \ldots \) (dovetailing)
 - \(0,6 \rightarrow 0,1 \)
 - \(0,2 \rightarrow 0,3 \)
 - \(1,0 \rightarrow 1,1 \)
 - \(2,0 \rightarrow 2,1 \)
 - \(3,0 \rightarrow \ldots \)
 - \((a, b) \) at position \((a+b+1)(a+b)/2+b \) in this order.

Rationals

All rational numbers \(\mathbb{Q} \): \(\frac{a}{b} \), such that \(a, b \in \mathbb{Z} \), and \(b \neq 0 \).

Enumerate: list \(0, \) positive and negative. How?

Same as \(\mathbb{Z}^2 \)!!! In fact, \(\mathbb{Z}^2 \) is “bigger” than \(\mathbb{Q} \).

So let’s show \(\mathbb{Z}^2 \) is countable.

Enumerate: \((0,0), (1,0), (1,1), (0,1), \ldots \)...

Will eventually get to any pair.

Two different pairs cannot map to the same natural number/same position in the spiral.

Every natural has a “corresponding” pair.

Where’s my bijection??? Too complicated! Enumeration is good enough:

A set \(S \) is countable if it can be enumerated in a sequence, i.e., if all of its elements can be listed as a sequence \(a_1, a_2, \ldots \). Make sure that (1) different elements map to different naturals. (2) every natural gets an element.

Back to Hilbert’s hotel

Where’s the function?

We want a bijection from \(\mathbb{N} \setminus \{0\} \) to \(\mathbb{N} \).

\(f(x) = x - 1 \). Maps every number from \(\mathbb{N} \setminus \{0\} \) to a number in \(\mathbb{N} \), and every number in \(\mathbb{N} \) has exactly one number \(y \in \mathbb{N} \setminus \{0\} \) such that \(f(y) = x \).

What if we had a bijection from \(\mathbb{N} \setminus \{0\} \) ?

Same thing! Bijection means that the sets have the same size. Invert it and you’ll get a bijection from \(\mathbb{N} \setminus \{0\} \) to \(\mathbb{N} \).
Let's get real

Is the set of Reals countable?

Let's consider the reals $[0,1]$. Each real has a decimal representation.

.500000000... (1/2)
.785398162... $\pi/4$
.367879441... $1/e$
.632120558... $1-1/e$
.345212312... Some real number

Diagonalization.

If countable, there exists a listing (enumeration), L contains all reals in $[0,1]$. For example

0: 500000000...
1: 765398162...
2: 367879441...
3: 632120558...
4: 345212312...

Construct "diagonal" number: .7767...

Diagonal Number: Digit i is 7 if number i's ith digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list!

Diagonal number not in list.

Diagonal number is real.

Contradiction!

Subset $[0,1]$ is not countable!!

All reals?

Subset $[0,1]$ is not countable!!

What about all reals?

Uncountable.

Any subset of a countable set is countable.

If reals are countable then so is $[0,1]$.

Another diagonalization.

The set of all subsets of N.

Example subsets of N: \emptyset, $\{0, \ldots, 7\}$, evens, odds, primes, multiples of 10

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:

If ith set in L does not contain i, $i \in D$.
otherwise $i \notin D$.

D is different from ith set in L for every i.

D is not in the listing.

D is a subset of N.

L does not contain all subsets of N.

Contradiction.

Theorem: The set of all subsets of N is not countable. (The set of all subsets of S, is the powerset of N)

Another diagonalization.

All reals?

Subset $[0,1]$ is not countable!!

What about all reals?

Uncountable.

Any subset of a countable set is countable.

If reals are countable then so is $[0,1]$.

Another diagonalization.

The set of all subsets of N.

Example subsets of N: \emptyset, $\{0, \ldots, 7\}$, evens, odds, primes, multiples of 10

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:

If ith set in L does not contain i, $i \in D$.
otherwise $i \notin D$.

D is different from ith set in L for every i.

D is not in the listing.

D is a subset of N.

L does not contain all subsets of N.

Contradiction.

Theorem: The set of all subsets of N is not countable. (The set of all subsets of S, is the powerset of N)
Countable or uncountable??

- Binary strings?
- Trees?
- Weighted trees?
- Inputs to the stable marriage algorithm?
- Mathematical proofs?
- Programs in Java?
- All possible endings to Game of Thrones?
- All subsets of Reals?
- Functions from \(N \) to \(N \)?

You already know some of these..... Think about induction!

What happened with Cantor?

Cantor’s work between 1874 and 1884 is the origin of set theory.
No one had realized that set theory had any nontrivial content.
Before Cantor: Finite, Infinite

After Cantor:
- Countable
 - Finite and countable. For example \(1, 2, 3 \)
 - Infinite and countable. For example \(N, Z, ... \)
- Uncountable. For example \([0, 1], \mathbb{R}...\)
- Bigger than uncountable! (Math 135, Math 136, Math 227A ...)

Everyone was upset! Many puzzled... Many openly hostile to
Cantor... Cantor was clinically depressed. In and out of hospitals until
the end of his life. Died in poverty...

Cantor’s legacy

Gottlob Frege: Let’s look at the foundations!
Clear ambition: Become the new Euclid.
Make up a bunch of axioms for number theory. (In the case of
gometry “A straight line segment can be drawn joining any two
points” etc)
Everything that is true in number theory can be inferred from the
axioms.
Writes Basic Laws of Arithmetic vol. 1. 680 pages (Amazon).
About to publish vol. 2. And then.....
Disaster!!

A bug

Bertrand Russell finds a bug!

Frege’s reaction: “Hardly anything more unfortunate can befall a
scientific writer than to have one of the foundations of his edifice
shaken after the work is finished. This was the position I was placed
in by a letter of Mr. Bertrand Russell, just when the printing of this
volume was nearing its completion.”

A poem

Zisimos Lorentzatos.
“Beware of systems grandiose, of mathematically strict causalities as
you’re trying, stone by stone, to found the goldenwoven tower of the
logical, castle and fort immune to contradiction. Designed in two
volumes, the foundational laws of arithmetic, or Grundgesetze of der
arithmetic in 1893, the first, 1903 the second. A life’s work. Hammer
on chisel blows for years and years. So far, so good. But as Frege
Gottlob was correcting, content, the printer’s proofs already of the
second volume, one cursed logic paradox, one not admitting
refutation, question by Russell Bertrand, forced, without delay, the
great thinker of Mecklenburg to add a last paragraph to his system,
show me a great thinker who would resist the truth, accepting the
reversible disaster. His foundations in ruin, his logic flawed, his work
wasted, and his two volumes imagine the colossal set back, odd load
and ballast for the refuge cart.”

Russell’s Paradox.

- “This statement is false”
 - Is the statement above true?
- A barber says “I shave all and only those men who do not shave
 themselves.”
 - Who shaves the barber??
- Self reference.........
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.
Let’s think about the set of all sets that don’t contain themselves. Call it A.
Does A contain itself?
Oops!
What type of object is a set that contain sets?
Change Axioms!

Changing Axioms?

They did keep trying to put all of mathematics on a firm basis...
Trying to find a set of axioms such that is
► Consistent: You can’t prove false statements
► Complete: Everything true can be proven.
Other people in this story: Russell, Whitehead, Wittgenstein, Hilbert
(We must know. We will know.) …
Until 1931.

Changing Axioms?

Kurt Gödel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:
Continuum hypothesis (see official notes if interested)

Next Topic: Undecidability.

► Undecidability. A happy ending?

Gödel …starved himself out of fear of being poisoned...
Russell … was fine….but for two schizophrenic children...
Wittgenstein … multiple tragedies in his family.
Dangerous work?
See Logicomix by Doxiadis, Papadimitriou (my advisor!), Papadatos, Di Donna.

Turing
Is it actually useful?

Turing: Write me a program checker!
A program that checks that the compiler works!
How about... Check that the compiler terminates on a certain input.

HALT(P, I)

\(P \) - program
\(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Notice:

Need a computer
...with the notion of a stored program!!!!

Program is a text string.
Text string can be an input to a program.
Program can be an input to a program.

Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
If HALT existed, we could use it to make the following table:

<table>
<thead>
<tr>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Program \(P_1 \) halts on input “\(P_1 \)” and “\(P_2 \)”.
\(P_2 \) halts on input “\(P_2 \)”.
\(P_3 \) doesn’t halt on input “\(P_3 \)”.

and so on...

Turing is different from every \(P_i \) on the diagonal.
Turing is not on list. But, Turing is a program.
Turing can be constructed from Halt.

Halt does not exist!

Implementing HALT.

\[\text{HALT}(P, I) \]

\(P \) - program
\(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Run \(P \) on \(I \) and check!

How long do you wait?
Something about infinity here, maybe?

Theorem: There is no program HALT.

Wow, that was easy!
We should be famous!

Halt does not exist.

Proof: Assume there is a program \(\text{HALT}(\cdot,\cdot) \).

Code:

import HALT;
function Turing(Program P) {
if (\text{HALT}(P, P.toString()) == “halts”):
while(true); (go in an infinite loop)
else:
 system.exit();
}

Run Turing(Turing).

Does Turing(Turing) halt?

Turing(Turing) halts

\[\implies \text{HALT(Turing, Turing.toString()) = halts} \]

Turing(Turing) loops forever

\[\implies \text{HALT(Turing, Turing.toString()) \# halts} \]

Turing(Turing) halts. (goes to system.exit())

Contradiction. Program HALT does not exist!

No computers for Turing!

In Turing’s time.

No computers.

Concept of program as data wasn’t really there.
Undecidable problems.

Does a program ever print “Hello World”?
Find exit points and add statement: Print “Hello World.”
Is there a program that makes other programs faster?
Is there a program that decides if two other programs are equivalent?
Does this computer program have any security vulnerabilities?

More about Alan Turing.

► Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
► Seminal paper in numerical analysis: Condition number.
► Seminal paper in mathematical biology.
► Movie:

British Apology.

Gordon Brown, 2009. “Thousands of people have come together to demand justice for Alan Turing and recognition of the appalling way he was treated. While Turing was dealt with under the law of the time and we can’t put the clock back, his treatment was of course utterly unfair and I am pleased to have the chance to say how deeply sorry I and we all are for what happened to him. Alan and the many thousands of other gay men who were convicted as he was convicted under homophobic laws were treated terribly. Over the years millions more lived in fear of conviction. …… So on behalf of the British government, and all those who live freely thanks to Alan’s work I am very proud to say: we’re sorry, you deserved so much better.” 2013. Granted Royal pardon.

Turing: personal.

Tragic ending…
► Arrested as a homosexual
► Given choice of prison or (quackish) injections to eliminate sex drive;
► Took injections.
► Lost security clearance…
► Denied entry into the United States…
► Suffered from depression;
► Suicided with cyanide at age 42. (A bite from the apple…. accident?)

Summary

Infinity is interesting!
And mind boggling
Computer Programs are an interesting thing.
Like Math.
Deep connection between mathematical proofs and computer programs.
Computer Programs cannot completely “understand” computer programs.
Example: no computer program can tell if any other computer program HALTS.
Programming is a super power.