Planar non-planar

A finite graph is planar iff it does not contain a subgraph that is (a subdivision of) K_5 or $K_{3,3}$.

Complete Graph.

K_n complete graph on n vertices.

- All edges are present.
- Everyone is my neighbor.
- Each vertex is adjacent to every other vertex.

Equivalence of Definitions.

Theorem:

"G connected and has $|V| - 1$ edges" \equiv "G is connected and has no cycles."

Lemma: If v is a degree 1 in connected graph G, $G - v$ is connected.

Proof:

For $x \neq y \neq z \in V$, there is path between x and y in G since connected, and does not use v (degree 1) $\implies G - v$ is connected.

By induction on $|V| - 1$ vertices and $|V| - 2$ edges so by induction \implies no cycle in $G - v$.

And no cycle in G since degree 1 cannot participate in cycle.

Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- A connected graph where any edge addition creates a cycle.

Some trees.

- no cycle and connected? Yes.
- $|V| - 1$ edges and connected? Yes.
- Removing any edge disconnects it. Harder to check, but yes.
- Adding any edge creates cycle. Harder to check, but yes.
Proof of if

Thm:
"G is connected and has no cycles" \(\implies\) "G connected and has \(|V|−1\) edges"

Proof:
Walk from a vertex using untraversed edges.
Until get stuck.

Claim:
Must stuck at a degree 1 vertex.

Proof of Claim:
Can’t visit any vertex more than once since no cycle.
Entered. Didn’t leave. Only one incident edge.
Removing node doesn’t create cycle.
New graph is connected.
Removing degree 1 node doesn’t disconnect from Degree 1 lemma.
By induction \(G−v\) has \(|V|−2\) edges.
\(G\) has one more or \(|V|−1\) edges.

Tree’s fall apart.

Thm:
Can always find a node such that the largest connected component we get by removing it has size at most \(|V|/2\)

Idea of proof.
Point edge toward bigger side.
Remove center node.

Hypercubes.

Complete graphs, really connected! But lots of edges.
\(|V|(|V|−1)/2\)
Trees, But few edges. \((|V|−1)\)
just falls apart!

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An \(n\)-dimensional hypercube consists of a 0-subcube (1-subcube) which is a \(n−1\)-dimensional hypercube with nodes labelled \(0x\) (1x) with the additional edges \((0x,1x)\).

Hypercube: Can’t cut me!

Thm:
Any subset \(S\) of the hypercube where \(|S|\leq|V|/2\) has \(\geq|S|\) edges connecting it to \(V−S\); \(|E∩S×(V−S)|\geq|S|\)

Terminology:
\((S, V−S)\) is cut.
a partition of the vertices of a graph into two disjoint subsets.
\((E∩S×(V−S))\) - cut edges.
Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.

Proof of Large Cuts.

Thm:
For any cut \((S, V−S)\) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:
Base Case: \(n=1\) \(V=\{0,1\}\).
Case 2: Count inside and across.

Yes

Yes

How many colors do we need?

2!

just look at one first

So by induction.

Bipartite?

Which of the following graphs are bipartite?

No

Yes

No

A graph is a bipartite graph if and only if it does not contain any odd-length cycles.

Proof

Only if: trivial

Start at a node \(v \) in one part, say \(V \), the cycle must be like leaving \(V \), entering \(V \), . . . Also the cycle must end at \(v \), so the cycle must end with “entering \(V \)” All paired up, even length.

No odd-length cycle \(\implies \) bipartite:

Different connected components does not influence each other, just look at one first

Pick one arbitrary vertex \(v \), split all vertices into two groups

Induction Step

Thm: For any cut \((S, V - S)\) in the hypercube, the number of cut edges is at least the size of the small side, \(|S|\).

Proof: Induction Step.

Case 1: Count edges inside subcube inductively.

Case 2: Count inside and across.

Recursive definition:

\[H_0 = (V_0, E_0), H_1 = (V_1, E_1) \]

edges \(E_0 \) that connect them.

\[H = (V_0 \cup V_1, E_0 \cup E_1) \]

\(S = S_0 \cup S_1 \) where \(S_0 \) in first, and \(S_1 \) in other.

Case 1: \(|S_0| \leq |V_0|/2, |S_1| \leq |V_1|/2\)

Both \(S_0 \) and \(S_1 \) are small sides. So by induction.

Edges cut in \(H_0 \) \(\geq |S_0| \)

Edges cut in \(H_1 \) \(\geq |S_1| \)

Total cut edges \(\geq |S_0| + |S_1| = |S| \).

Induction Step.

Thm: For any cut \((S, V - S)\) in the hypercube, the number of cut edges is at least the size of the small side, \(|S|\).

Proof: Induction Step. Case 2.

Recall Case 1: \(|S_0| + |S_1| \leq |V|/2\)

\(|S_1| \leq |V_1|/2\) since \(|S| \leq |V|/2\)

\(|S_0| \leq |V_0|/2\) \(\implies \) \(|S_0| \leq |V_0|/2\)

\(|S_1| \leq |V_1| - |S_1| \leq |V_1|/2\)

Edges in \(E_0 \) connect corresponding nodes.

\(|S_0| \leq |S_1| \leq |V_1|/2\)

Total cut edges:

\(|S_0| + |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|\)

\(|V_0| = |V|/2 \geq |S|\)

Also, case 3 where \(|S_1| \geq |V|/2\) is symmetric.

Induction Step Idea

Thm: For any cut \((S, V - S)\) in the hypercube, the number of cut edges is at least the size of the small side, \(|S|\).

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.

Case 2: Count inside and across.
What have we done?!

Graphs!

- Eulerian tour: DNA sequence reconstructing
- Coloring: Cellular tower frequency assignment
- Trees: Immense applications

Modeling reality:

- Internet? Giant directed graph
- Dark net? A separate connected component

......