CS70: Discrete Math and Probability

Fan Ye
June 28, 2016
A finite graph is planar iff it does not contain a subgraph that is (a subdivision of) K_5 or $K_{3,3}$.
Complete Graph.

K_n complete graph on n vertices.
All edges are present.
Everyone is my neighbor.
Each vertex is adjacent to every other vertex.

How many edges?
Each vertex is incident to $n - 1$ edges.
Sum of degrees is $n(n - 1)$.
⇒ Number of edges is $n(n - 1)/2$.
Remember sum of degree is $2|E|$.
Definitions:

A connected graph without a cycle.
A connected graph with $|V| - 1$ edges.
A connected graph where any edge removal disconnects it.
A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.
$|V| - 1$ edges and connected? Yes.
removing any edge disconnects it. Harder to check. but yes.
Adding any edge creates cycle. Harder to check. but yes.
Theorem:
“G connected and has \(|V| - 1\) edges” \(\equiv\)
“G is connected and has no cycles.”

Lemma: If \(v\) is a degree 1 in connected graph \(G\), \(G - v\) is connected.

Proof:
For \(x \neq v, y \neq v \in V\),
there is path between \(x\) and \(y\) in \(G\) since connected.
and does not use \(v\) (degree 1)
\(\Rightarrow\) \(G - v\) is connected.
Proof of only if.

Thm:
“\(G\) connected and has \(|V| - 1\) edges” \(\equiv\)
“\(G\) is connected and has no cycles.”

Proof of \(\implies\): By induction on \(|V|\).

Base Case: \(|V| = 1\). \(0 = |V| - 1\) edges and has no cycles.

Induction Step:
Claim: There is a degree 1 node.

Proof: First, connected \(\implies\) every vertex degree \(\geq 1\).

- Sum of degrees is \(2|V| - 2\)
- Average degree \(2 - 2/|V|\)
- Not everyone is bigger than average!

By degree 1 removal lemma, \(G - v\) is connected.

\(G - v\) has \(|V| - 1\) vertices and \(|V| - 2\) edges so by induction
\(\implies\) no cycle in \(G - v\).

And no cycle in \(G\) since degree 1 cannot participate in cycle.
Proof of if

Thm:
“G is connected and has no cycles” → “G connected and has $|V| - 1$ edges”

Proof:
Walk from a vertex using untraversed edges.
Until get stuck.

Claim: Must stuck at a degree 1 vertex.

Proof of Claim:
Can’t visit any vertex more than once since no cycle.
Entered. Didn’t leave. Only one incident edge.
Removing node doesn’t create cycle.
New graph is connected.
Removing degree 1 node doesn’t disconnect from Degree 1 lemma.

By induction $G - v$ has $|V| - 2$ edges.

G has one more or $|V| - 1$ edges.
Thm: Can always find a node such that the largest connected component we get by removing it has size at most $|V|/2$

Idea of proof.

Point edge toward bigger side.
Remove center node.
Hypercubes. Complete graphs, really connected! But lots of edges.
\[|V| (|V| - 1)/2 \]
Trees, But few edges. (\(|V| - 1\))
just falls apart!

Hypercubes. Really connected.
Also represents bit-strings nicely.

\[G = (V, E) \]
\[|V| = \{0, 1\}^n, \]
\[|E| = \{(x, y) | x \text{ and } y \text{ differ in one bit position.}\} \]

2\(^n\) vertices. number of \(n\)-bit strings!
\(n2^{n-1}\) edges.
\(2^n\) vertices each of degree \(n\)
total degree is \(n2^n\) and half as many edges!
A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a $n-1$-dimensional hypercube with nodes labelled $0x$ ($1x$) with the additional edges $(0x,1x)$.
Thm: Any subset S of the hypercube where $|S| \leq |V|/2$ has $\geq |S|$ edges connecting it to $V - S$; $|E \cap S \times (V - S)| \geq |S|$.

Terminology:
- $(S, V - S)$ is cut.
 a partition of the vertices of a graph into two disjoint subsets.
- $(E \cap S \times (V - S))$ - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.
Thm: For any cut \((S, V - S)\) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:
Base Case: \(n = 1\) \(V = \{0, 1\}\).
Thm: For any cut \((S, V - S)\) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.

Case 2: Count inside and across.
Thm: For any cut \((S, V - S)\) in the hypercube, the number of cut edges is at least the size of the small side, \(|S|\).

Proof: Induction Step.

Recursive definition:

\[H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_x \text{ that connect them.} \]

\[H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x) \]

\[S = S_0 \cup S_1 \text{ where } S_0 \text{ in first, and } S_1 \text{ in other.} \]

Case 1: \(|S_0| \leq |V_0|/2, |S_1| \leq |V_1|/2\)

Both \(S_0\) and \(S_1\) are small sides. So by induction.

- Edges cut in \(H_0 \geq |S_0|\).
- Edges cut in \(H_1 \geq |S_1|\).

Total cut edges \(\geq |S_0| + |S_1| = |S|\). \(\Box\)
Thm: For any cut \((S, V \setminus S)\) in the hypercube, the number of cut edges is at least the size of the small side, \(|S|\).

Proof: **Induction Step. Case 2.** \(|S_0| \geq |V_0|/2.**

Recall Case 1: \(|S_0|, |S_1| \leq |V|/2 \)

\(|S_1| \leq |V_1|/2\) since \(|S| \leq |V|/2.\)

\[\implies \geq |S_1| \text{ edges cut in } E_1.\]

\(|S_0| \geq |V_0|/2 \implies |V_0 - S_0| \leq |V_0|/2\)

\[\implies \geq |V_0| - |S_0| \text{ edges cut in } E_0.\]

Edges in \(E_x\) connect corresponding nodes.

\[\implies \geq |S_0| - |S_1| \text{ edges cut in } E_x.\]

Total edges cut:

\[\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|\]

\[|V_0| = |V|/2 \geq |S|.\]

Also, case 3 where \(|S_1| \geq |V|/2\) is symmetric.
Bipartite graph: a bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V.

U and V are sometimes called the parts of the graph.

Coloring? How many colors do we need? 2!
Which of the following graphs are bipartite?

No Yes No Yes

A graph is a bipartite graph if and only if it does not contain any odd-length cycles.
Proof

Only if: trivial

Start at a node v in one part, say V, the cycle must be like leaving V, entering V, ... Also the cycle must end at v, so the cycle must end with "entering $V". All paired up, even length.

No odd-length cycle \implies bipartite:

Different connected components does not influence each other, just look at one first

Pick one arbitrary vertex v, split all vertices into two groups

$A = \{ u \in V | \exists \text{ odd length path from } v \text{ to } u \}$

$B = \{ u \in V | \exists \text{ even length path from } v \text{ to } u \}$

We have a bipartite graph if A and B are disjoint.

What if a vertex in both sets? Odd length cycle! Contradiction
What have we done?!

Graphs!

Eulerian tour: DNA sequence reconstructing

Coloring: Cellular tower frequency assignment

Trees: Immense applications.........

Modeling reality:

 Internet? Giant directed graph
 Dark net? A separate connect component!
