CS70: Discrete Math and Probability

Fan Ye
June 27, 2016
More graphs
More graphs

Connectivity
Eulerian Tour
Planar graphs
 5 coloring theorem
u and v are connected if there is a path between u and v.

A connected graph is a graph where all pairs of vertices are connected.
u and v are connected if there is a path between u and v.

A connected graph is a graph where all pairs of vertices are connected.
u and v are connected if there is a path between u and v.

A connected graph is a graph where all pairs of vertices are connected.

If one vertex x is connected to every other vertex.
Connectivity

u and v are connected if there is a path between u and v.

A connected graph is a graph where all pairs of vertices are connected.

If one vertex x is connected to every other vertex.

Is graph connected?
Connectivity

u and v are connected if there is a path between u and v.

A connected graph is a graph where all pairs of vertices are connected.

If one vertex x is connected to every other vertex.
Is graph connected? Yes?
u and v are connected if there is a path between u and v.

A connected graph is a graph where all pairs of vertices are connected.

If one vertex x is connected to every other vertex.
Is graph connected? Yes? No?
u and v are connected if there is a path between u and v.

A connected graph is a graph where all pairs of vertices are connected.

If one vertex x is connected to every other vertex. Is graph connected? Yes? No?

Proof idea:
u and v are connected if there is a path between u and v.

A connected graph is a graph where all pairs of vertices are connected.

If one vertex x is connected to every other vertex.
 Is graph connected? Yes? No?

Proof idea: Use path from u to x and then from x to v.

u and v are connected if there is a path between u and v.

A connected graph is a graph where all pairs of vertices are connected.

If one vertex x is connected to every other vertex.
Is graph connected? Yes? No?

Proof idea: Use path from u to x and then from x to v.

May not be simple!
u and v are connected if there is a path between u and v.

A connected graph is a graph where all pairs of vertices are connected.

If one vertex x is connected to every other vertex.
Is graph connected? Yes? No?

Proof idea: Use path from u to x and then from x to v.

May not be simple!
Either modify definition to walk.
u and v are **connected** if there is a path between u and v.

A connected graph is a graph where all pairs of vertices are connected.

If one vertex x is connected to every other vertex.
Is graph connected? Yes? No?

Proof idea: Use path from u to x and then from x to v.

May not be simple!
Either modify definition to walk.
Or cut out cycles.
u and v are connected if there is a path between u and v.

A connected graph is a graph where all pairs of vertices are connected.

If one vertex x is connected to every other vertex.
Is graph connected? Yes? No?

Proof idea: Use path from u to x and then from x to v.

May not be simple!
Either modify definition to walk.
Or cut out cycles.
u and v are connected if there is a path between u and v.

A connected graph is a graph where all pairs of vertices are connected.

If one vertex x is connected to every other vertex.
Is graph connected? Yes? No?

Proof idea: Use path from u to x and then from x to v.

May not be simple!
Either modify definition to walk.
Or cut out cycles.
Is graph above connected?

Connected Components:

- \{1, 10, 7, 5, 8, 4, 3, 11\}
- \{2, 9, 6\}

Connected component - maximal set of connected vertices.

Quick Check: Is \{10, 7, 5\} a connected component?

No.
Is graph above connected? Yes!

Connected Components:
- \{1\}, \{10, 7, 5\}, \{11, 4, 3, 8\}, \{2, 6, 9\}.
Connected component

Is graph above connected? Yes!

How about now?
Is graph above connected? Yes!

How about now? No!
Is graph above connected? Yes!

How about now? No!

Connected Components?
Is graph above connected? Yes!

How about now? No!

Connected Components? \{1\}, \{10, 7, 5, 8, 4, 3, 11\}, \{2, 9, 6\}.
Is graph above connected? Yes!

How about now? No!

Connected Components? \{1\}, \{10, 7, 5, 8, 4, 3, 11\}, \{2, 9, 6\}.

Connected component - maximal set of connected vertices.
Connected component

Is graph above connected? Yes!

How about now? No!

Connected Components? \{1\}, \{10, 7, 5, 8, 4, 3, 11\}, \{2, 9, 6\}.

Connected component - maximal set of connected vertices.

Quick Check: Is \{10, 7, 5\} a connected component?
Is graph above connected? Yes!

How about now? No!

Connected Components? \{1\}, \{10, 7, 5, 8, 4, 3, 11\}, \{2, 9, 6\}.

Connected component - maximal set of connected vertices.

Quick Check: Is \{10, 7, 5\} a connected component? No.
Finally..back to bridges!

Definition:
An Eulerian Tour is a tour that visits each edge exactly once.

Theorem:
Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if:
Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected.

Tour enters and leaves vertex v on each visit.

Uses two incident edges per visit.

Therefore v has even degree.

When you enter, you leave.

For starting node, tour leaves first...then enters at end.
Definition:

An Eulerian Tour is a tour that visits each edge exactly once.

Theorem:

Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \Rightarrow connected and all even degree.

Eulerian Tour is connected so graph is connected.

Tour enters and leaves vertex v on each visit.

Uses two incident edges per visit.

Tour uses all incident edges.

Therefore v has even degree.

When you enter, you leave.

For starting node, tour leaves first then enters at end.
Finally..back to bridges!

Definition: An Eulerian Tour is a tour that visits each edge exactly once.
Finally..back to bridges!

Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.
Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.
Finally..back to bridges!

Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected.
Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected. Tour enters and leaves vertex v on each visit.
Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected. Tour enters and leaves vertex v on each visit. Uses two incident edges per visit.
Finally..back to bridges!

Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected.
Tour enters and leaves vertex v on each visit.
Uses two incident edges per visit. Tour uses all incident edges.
Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected. Tour enters and leaves vertex v on each visit. Uses two incident edges per visit. Tour uses all incident edges. Therefore v has even degree.
Finally..back to bridges!

Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \Rightarrow connected and all even degree.

Eulerian Tour is connected so graph is connected.
Tour enters and leaves vertex v on each visit.
Uses two incident edges per visit. Tour uses all incident edges. Therefore v has even degree.
Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected. Tour enters and leaves vertex v on each visit. Uses two incident edges per visit. Tour uses all incident edges. Therefore v has even degree.

When you enter, you leave. For starting node, tour leaves firstthen enters at end.
Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected.
Tour enters and leaves vertex v on each visit.
Uses two incident edges per visit. Tour uses all incident edges. Therefore v has even degree.

When you enter, you leave.
For starting node, tour leaves firstthen enters at end.
Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected. Tour enters and leaves vertex v on each visit. Uses two incident edges per visit. Tour uses all incident edges. Therefore v has even degree.

When you enter, you leave.
For starting node, tour leaves firstthen enters at end.
Finally..back to bridges!

Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected. Tour enters and leaves vertex v on each visit. Uses two incident edges per visit. Tour uses all incident edges. Therefore v has even degree.

When you enter, you leave. For starting node, tour leaves firstthen enters at end.
Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected. Tour enters and leaves vertex v on each visit. Uses two incident edges per visit. Tour uses all incident edges. Therefore v has even degree. \square
Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected. Tour enters and leaves vertex v on each visit. Uses two incident edges per visit. Tour uses all incident edges. Therefore v has even degree.

When you enter, you leave.
Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \(\implies \) connected and all even degree.

Eulerian Tour is connected so graph is connected. Tour enters and leaves vertex \(v \) on each visit. Uses two incident edges per visit. Tour uses all incident edges. Therefore \(v \) has even degree.

When you enter, you leave.
For starting node,
Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected. Tour enters and leaves vertex v on each visit. Uses two incident edges per visit. Tour uses all incident edges. Therefore v has even degree.

When you enter, you leave.
For starting node, tour leaves first
Finally..back to bridges!

Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected.
Tour enters and leaves vertex v on each visit.
Uses two incident edges per visit. Tour uses all incident edges. Therefore v has even degree.

When you enter, you leave.
For starting node, tour leaves firstthen enters at end.
Definition: An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected. Tour enters and leaves vertex v on each visit. Uses two incident edges per visit. Tour uses all incident edges. Therefore v has even degree.

When you enter, you leave. For starting node, tour leaves firstthen enters at end.
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm.
Finding a tour!

Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from $v (1)$ on “unused” edges
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges.
Proof of if: Even + connected \implies Eulerian Tour. We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges
Proof of if: Even + connected \Rightarrow Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v_1 on “unused” edges.
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from $v(1)$ on “unused” edges
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges
... till you get back to v.
Proof of if: Even + connected \Rightarrow Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges
... till you get back to v.
2. Remove tour, C.
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components.

1, 10 7, 8 4 11, 5 3 9 6 2, 11, 4 5, 2, 10
Proof of if: Even + connected \implies Eulerian Tour.

We will give an algorithm. First by picture.

1. Take a walk starting from $v(1)$ on “unused” edges ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components.
 Each is touched by C.
4. Recurse on G_1, \ldots, G_k starting from v_i.
5. Splice together.
Finding a tour!

Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges
 ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components.
 Each is touched by C.
 Why?

1 2 3 4 5 6 7 8 9 10 11
Proof of if: Even + connected \implies Eulerian Tour.

We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges
 ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components.
 Each is touched by C.
 Why? G was connected.
Finding a tour!

Proof of if: Even + connected \implies Eulerian Tour.

We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components.
 Each is touched by C.
 Why? G was connected.
 Let v_i be (first) node in G_i touched by C.

[Diagram of a graph with nodes and edges indicating the Eulerian tour and the steps of the algorithm.]
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components.
 Each is touched by C.
 Why? G was connected.
 Let v_i be (first) node in G_i touched by C.
 Example: $v_1 = 1$,

![Graph Image]
Proof of if: Even + connected \implies Eulerian Tour.

We will give an algorithm. First by picture.

1. Take a walk starting from v_1 (1) on “unused” edges ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components.
 Each is touched by C.
 Why? G was connected.
 Let v_i be (first) node in G_i touched by C.
 Example: $v_1 = 1$, $v_2 = 10$,

![Diagram of a graph with labeled nodes and arrows indicating the Eulerian Tour path.](image-url)
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components.
 Each is touched by C.
 Why? G was connected.
 Let v_i be (first) node in G_i touched by C.
 Example: $v_1 = 1$, $v_2 = 10$, $v_3 = 4$,

Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components.
 Each is touched by C.
 Why? G was connected.
 Let v_i be (first) node in G_i touched by C.
 Example: $v_1 = 1$, $v_2 = 10$, $v_3 = 4$, $v_4 = 2$.

![Diagram of a graph with nodes and edges labeled 1 to 11]
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components.
 Each is touched by C.
 Why? G was connected.
 Let v_i be (first) node in G_i touched by C.
 Example: $v_1 = 1, v_2 = 10, v_3 = 4, v_4 = 2$.
4. Recurse on G_1, \ldots, G_k starting from v_i
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges
 ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components.
 Each is touched by C.
 Why? G was connected.
 Let v_i be (first) node in G_i touched by C.
 Example: $v_1 = 1$, $v_2 = 10$, $v_3 = 4$, $v_4 = 2$.
4. Recurse on G_1, \ldots, G_k starting from v_i
Finding a tour!

Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components. Each is touched by C.
 Why? G was connected.
 Let v_i be (first) node in G_i touched by C.
 Example: $v_1 = 1$, $v_2 = 10$, $v_3 = 4$, $v_4 = 2$.
4. Recurse on G_1, \ldots, G_k starting from v_i
5. Splice together.
Proof of if: Even + connected \implies Eulerian Tour.

We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges...
 ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components.
 Each is touched by C.
 Why? G was connected.
 Let v_i be (first) node in G_i touched by C.
 Example: $v_1 = 1$, $v_2 = 10$, $v_3 = 4$, $v_4 = 2$.
4. Recurse on G_1, \ldots, G_k starting from v_i.
5. Splice together.
 1, 10
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components.
 Each is touched by C.
 Why? G was connected.
 Let v_i be (first) node in G_i touched by C.
 Example: $v_1 = 1$, $v_2 = 10$, $v_3 = 4$, $v_4 = 2$.
4. Recurse on G_1, \ldots, G_k starting from v_i
5. Splice together.
 $1,10,7,8,5,10$
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components.
 Each is touched by C.
 Why? G was connected.
 Let v_i be (first) node in G_i touched by C.
 Example: $v_1 = 1$, $v_2 = 10$, $v_3 = 4$, $v_4 = 2$.
4. Recurse on G_1, \ldots, G_k starting from v_i
5. Splice together.
 $1, 10, 7, 8, 5, 10, 8, 4$
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components. Each is touched by C.
 Why? G was connected.
 Let v_i be (first) node in G_i touched by C.
 Example: $v_1 = 1$, $v_2 = 10$, $v_3 = 4$, $v_4 = 2$.
4. Recurse on G_1, \ldots, G_k starting from v_i
5. Splice together.
 $1, 10, 7, 8, 5, 10, 8, 4, 3, 11, 4$
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components. Each is touched by C.
 Why? G was connected.
 Let v_i be (first) node in G_i touched by C.
 Example: $v_1 = 1$, $v_2 = 10$, $v_3 = 4$, $v_4 = 2$.
4. Recurse on G_1, \ldots, G_k starting from v_i starting from v_i.
5. Splice together.
 $1, 10, 7, 8, 5, 10, 8, 4, 3, 11, 4, 5, 2$
Proof of if: Even + connected \implies Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components. Each is touched by C.
 Why? G was connected.
 Let v_i be (first) node in G_i touched by C.
 Example: $v_1 = 1$, $v_2 = 10$, $v_3 = 4$, $v_4 = 2$.
4. Recurse on G_1, \ldots, G_k starting from v_i
5. Splice together.
 $1, 10, 7, 8, 5, 10, 8, 4, 3, 11, 4, 5, 2, 6, 9, 2$
Finding a tour!

Proof of if: Even + connected \implies Eulerian Tour.

We will give an algorithm. First by picture.

1. Take a walk starting from v (1) on “unused” edges
 ... till you get back to v.
2. Remove tour, C.
3. Let G_1, \ldots, G_k be connected components.
 Each is touched by C.
 Why? G was connected.
 Let v_i be (first) node in G_i touched by C.
 Example: $v_1 = 1$, $v_2 = 10$, $v_3 = 4$, $v_4 = 2$.
4. Recurse on G_1, \ldots, G_k starting from v_i
5. Splice together.
 $1, 10, 7, 8, 5, 10, 8, 4, 3, 11, 4, 5, 2, 6, 9, 2$ and to 1!
1. Take a walk from arbitrary node v, until you get back to v.
Finding a tour: in general.

1. Take a walk from arbitrary node v, until you get back to v.

Claim: Do get back to v!
Finding a tour: in general.

1. Take a walk from arbitrary node v, until you get back to v.

Claim: Do get back to v!

Proof of Claim: Even degree.
Finding a tour: in general.

1. Take a walk from arbitrary node v, until you get back to v.

Claim: Do get back to v!

Proof of Claim: Even degree. If enter, can leave
Finding a tour: in general.

1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!
Proof of Claim: Even degree. If enter, can leave except for \(v \).

2. Remove cycle, \(C \), from \(G \).
 Resulting graph may be disconnected. (Removed edges!)
3. Find tour \(T_i \) of \(G_i \) starting/ending at \(v_i \).
4. Splice \(T_i \) into \(C \) where \(v_i \) first appears in \(C \).

Visits every edge once:
Visits edges in \(C \) exactly once.
By induction for all edges in each \(G_i \).
Finding a tour: in general.

1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!

Proof of Claim: Even degree. If enter, can leave except for \(v \).
Finding a tour: in general.

1. Take a walk from arbitrary node v, until you get back to v.

Claim: Do get back to v!

Proof of Claim: Even degree. If enter, can leave except for v.

2. Remove cycle, C, from G.
1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!
Proof of Claim: Even degree. If enter, can leave except for \(v \).

2. Remove cycle, \(C \), from \(G \).
Resulting graph may be disconnected. (Removed edges!)
1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!

Proof of Claim: Even degree. If enter, can leave except for \(v \). □

2. Remove cycle, \(C \), from \(G \).
Resulting graph may be disconnected. (Removed edges!)
Let components be \(G_1, \ldots, G_k \).
1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!

Proof of Claim: Even degree. If enter, can leave except for \(v \).

2. Remove cycle, \(C \), from \(G \).
 - Resulting graph may be disconnected. (Removed edges!)
 - Let components be \(G_1, \ldots, G_k \).
 - Let \(v_i \) be first vertex of \(C \) that is in \(G_i \).
Finding a tour: in general.

1. Take a walk from arbitrary node v, until you get back to v.

Claim: Do get back to v!

Proof of Claim: Even degree. If enter, can leave except for v.

2. Remove cycle, C, from G.

Resulting graph may be disconnected. (Removed edges!)

Let components be G_1, \ldots, G_k.

Let v_i be first vertex of C that is in G_i.

Why is there a v_i in C?
Finding a tour: in general.

1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!

Proof of Claim: Even degree. If enter, can leave except for \(v \). \(\square \)

2. Remove cycle, \(C \), from \(G \).
 Resulting graph may be disconnected. (Removed edges!)
 Let components be \(G_1, \ldots, G_k \).
 Let \(v_i \) be first vertex of \(C \) that is in \(G_i \).
 Why is there a \(v_i \) in \(C \)?
 \(G \) was connected \(\implies \)
Finding a tour: in general.

1. Take a walk from arbitrary node v, until you get back to v.

Claim: Do get back to v!

Proof of Claim: Even degree. If enter, can leave except for v. □

2. Remove cycle, C, from G.

Resulting graph may be disconnected. (Removed edges!)

Let components be G_1, \ldots, G_k.

Let v_i be first vertex of C that is in G_i.

Why is there a v_i in C?

G was connected \implies

a vertex in G_i must be incident to a removed edge in C.
Finding a tour: in general.

1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!

Proof of Claim: Even degree. If enter, can leave except for \(v \).

2. Remove cycle, \(C \), from \(G \).

Resulting graph may be disconnected. (Removed edges!)

Let components be \(G_1, \ldots, G_k \).

Let \(v_i \) be first vertex of \(C \) that is in \(G_i \).

Why is there a \(v_i \) in \(C \)?

- \(G \) was connected \(\implies \)
 - a vertex in \(G_i \) must be incident to a removed edge in \(C \).
Finding a tour: in general.

1. Take a walk from arbitrary node \(v\), until you get back to \(v\).

 Claim: Do get back to \(v\)!

 Proof of Claim: Even degree. If enter, can leave except for \(v\).

2. Remove cycle, \(C\), from \(G\).

 Resulting graph may be disconnected. (Removed edges!)

 Let components be \(G_1, \ldots, G_k\).

 Let \(v_i\) be first vertex of \(C\) that is in \(G_i\).

 Why is there a \(v_i\) in \(C\)?

 - \(G\) was connected \(\implies\)
 - a vertex in \(G_i\) must be incident to a removed edge in \(C\).

 Claim: Each vertex in each \(G_i\) has even degree
Finding a tour: in general.

1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!

Proof of Claim: Even degree. If enter, can leave except for \(v \).

2. Remove cycle, \(C \), from \(G \).

Resulting graph may be disconnected. (Removed edges!)

Let components be \(G_1, \ldots, G_k \).

Let \(v_i \) be first vertex of \(C \) that is in \(G_i \).

Why is there a \(v_i \) in \(C \)?

\(G \) was connected \(\implies \) a vertex in \(G_i \) must be incident to a removed edge in \(C \).

Claim: Each vertex in each \(G_i \) has even degree and is connected.
Finding a tour: in general.

1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!

Proof of Claim: Even degree. If enter, can leave except for \(v \).

2. Remove cycle, \(C \), from \(G \).
 Resulting graph may be disconnected. (Removed edges!)
 Let components be \(G_1, \ldots, G_k \).
 Let \(v_i \) be first vertex of \(C \) that is in \(G_i \).
 Why is there a \(v_i \) in \(C \)?
 \(G \) was connected \(\implies \) a vertex in \(G_i \) must be incident to a removed edge in \(C \).

Claim: Each vertex in each \(G_i \) has even degree and is connected.

Prf: Tour \(C \) has even incidences to any vertex \(v \).
Finding a tour: in general.

1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!
Proof of Claim: Even degree. If enter, can leave except for \(v \).

2. Remove cycle, \(C \), from \(G \).
Resulting graph may be disconnected. (Removed edges!)
Let components be \(G_1, \ldots, G_k \).
Let \(v_i \) be first vertex of \(C \) that is in \(G_i \).
Why is there a \(v_i \) in \(C \)?
 \(G \) was connected \(\implies \)
 a vertex in \(G_i \) must be incident to a removed edge in \(C \).

Claim: Each vertex in each \(G_i \) has even degree and is connected.
Prf: Tour \(C \) has even incidences to any vertex \(v \).
Finding a tour: in general.

1. Take a walk from arbitrary node v, until you get back to v.

Claim: Do get back to v!

Proof of Claim: Even degree. If enter, can leave except for v. □

2. Remove cycle, C, from G.

Resulting graph may be disconnected. (Removed edges!)

Let components be G_1, \ldots, G_k.

Let v_i be first vertex of C that is in G_i.

Why is there a v_i in C?

G was connected \implies

a vertex in G_i must be incident to a removed edge in C.

Claim: Each vertex in each G_i has even degree and is connected.

Prf: Tour C has even incidences to any vertex v. □

3. Find tour T_i of G_i
Finding a tour: in general.

1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!

Proof of Claim: Even degree. If enter, can leave except for \(v \).

2. Remove cycle, \(C \), from \(G \).
 Resulting graph may be disconnected. (Removed edges!)
 Let components be \(G_1, \ldots, G_k \).
 Let \(v_i \) be first vertex of \(C \) that is in \(G_i \).
 Why is there a \(v_i \) in \(C \)?
 \[
 G \text{ was connected} \implies \text{a vertex in } G_i \text{ must be incident to a removed edge in } C.
 \]

Claim: Each vertex in each \(G_i \) has even degree and is connected.

Prf: Tour \(C \) has even incidences to any vertex \(v \).

3. Find tour \(T_i \) of \(G_i \) starting/ending at \(v_i \).
Finding a tour: in general.

1. Take a walk from arbitrary node v, until you get back to v.

Claim: Do get back to v!

Proof of Claim: Even degree. If enter, can leave except for v. □

2. Remove cycle, C, from G.

Resulting graph may be disconnected. (Removed edges!)

Let components be G_1, \ldots, G_k.

Let v_i be first vertex of C that is in G_i.

Why is there a v_i in C?

- G was connected \implies
 - a vertex in G_i must be incident to a removed edge in C.

Claim: Each vertex in each G_i has even degree and is connected.

Prf: Tour C has even incidences to any vertex v. □

3. Find tour T_i of G_i starting/ending at v_i. Induction.
Finding a tour: in general.

1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!

Proof of Claim: Even degree. If enter, can leave except for \(v \).

2. Remove cycle, \(C \), from \(G \).

Resulting graph may be disconnected. (Removed edges!)

Let components be \(G_1, \ldots, G_k \).

Let \(v_i \) be first vertex of \(C \) that is in \(G_i \).

Why is there a \(v_i \) in \(C \)?

\(G \) was connected \(\implies \)

a vertex in \(G_i \) must be incident to a removed edge in \(C \).

Claim: Each vertex in each \(G_i \) has even degree and is connected.

Prf: Tour \(C \) has even incidences to any vertex \(v \).

3. Find tour \(T_i \) of \(G_i \) starting/ending at \(v_i \). Induction.

4. Splice \(T_i \) into \(C \) where \(v_i \) first appears in \(C \).
Finding a tour: in general.

1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!
Proof of Claim: Even degree. If enter, can leave except for \(v \).

2. Remove cycle, \(C \), from \(G \).
Resulting graph may be disconnected. (Removed edges!)
Let components be \(G_1, \ldots, G_k \).
Let \(v_i \) be first vertex of \(C \) that is in \(G_i \).
 Why is there a \(v_i \) in \(C \)?
 \(G \) was connected \(\implies \) a vertex in \(G_i \) must be incident to a removed edge in \(C \).

Claim: Each vertex in each \(G_i \) has even degree and is connected.
Prf: Tour \(C \) has even incidences to any vertex \(v \).

3. Find tour \(T_i \) of \(G_i \) starting/ending at \(v_i \). Induction.
4. Splice \(T_i \) into \(C \) where \(v_i \) first appears in \(C \).

Visits every edge once:
 Visits edges in \(C \)
Finding a tour: in general.

1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!

Proof of Claim: Even degree. If enter, can leave except for \(v \).

2. Remove cycle, \(C \), from \(G \).

Resulting graph may be disconnected. (Removed edges!)

Let components be \(G_1, \ldots, G_k \).

Let \(v_i \) be first vertex of \(C \) that is in \(G_i \).

Why is there a \(v_i \) in \(C \)?

\(G \) was connected \(\implies \) a vertex in \(G_i \) must be incident to a removed edge in \(C \).

Claim: Each vertex in each \(G_i \) has even degree and is connected.

Prf: Tour \(C \) has even incidences to any vertex \(v \).

3. Find tour \(T_i \) of \(G_i \) starting/ending at \(v_i \). Induction.

4. Splice \(T_i \) into \(C \) where \(v_i \) first appears in \(C \).

Visits every edge once:

Visits edges in \(C \) exactly once.
Finding a tour: in general.

1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!

Proof of Claim: Even degree. If enter, can leave except for \(v \).

2. Remove cycle, \(C \), from \(G \).

Resulting graph may be disconnected. (Removed edges!)

Let components be \(G_1, \ldots, G_k \).
Let \(v_i \) be first vertex of \(C \) that is in \(G_i \).

Why is there a \(v_i \) in \(C \)?

- \(G \) was connected \(\implies \)
 - a vertex in \(G_i \) must be incident to a removed edge in \(C \).

Claim: Each vertex in each \(G_i \) has even degree and is connected.

Prf: Tour \(C \) has even incidences to any vertex \(v \).

3. Find tour \(T_i \) of \(G_i \) starting/ending at \(v_i \). Induction.

4. Splice \(T_i \) into \(C \) where \(v_i \) first appears in \(C \).

Visits every edge once:

- Visits edges in \(C \) exactly once.
- By induction for all edges in each \(G_i \).
Finding a tour: in general.

1. Take a walk from arbitrary node v, until you get back to v.

Claim: Do get back to v!

Proof of Claim: Even degree. If enter, can leave except for v.

2. Remove cycle, C, from G.

Resulting graph may be disconnected. (Removed edges!)

Let components be G_1, \ldots, G_k.

Let v_i be first vertex of C that is in G_i.

Why is there a v_i in C?

G was connected \implies a vertex in G_i must be incident to a removed edge in C.

Claim: Each vertex in each G_i has even degree and is connected.

Prf: Tour C has even incidences to any vertex v.

3. Find tour T_i of G_i starting/ending at v_i. Induction.

4. Splice T_i into C where v_i first appears in C.

Visits every edge once:

- Visits edges in C exactly once.
- By induction for all edges in each G_i.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete?

Planar? Yes for Triangle.
Four node complete?
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No!
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No!
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why?
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.

Two to three nodes, bipartite?
A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.

Two to three nodes, bipartite? Yes.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.

Two to three nodes, bipartite? Yes.
Three to three nodes, complete/bipartite or $K_{3,3}$.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.

Two to three nodes, bipartite? Yes.
Three to three nodes, complete/bipartite or $K_{3,3}$? No.
A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.

Two to three nodes, bipartite? Yes.
Three to three nodes, complete/bipartite or $K_{3,3}$? No. Why?
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.

Two to three nodes, bipartite? Yes.
Three to three nodes, complete/bipartite or $K_{3,3}$? No. Why? Later.
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for triangle?

2 complete on four vertices or K_4?

4 bipartite, complete two/three or $K_2, 3$?

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$

K_4: $4 + 4 = 6 + 2!$

$K_2, 3$: $5 + 3 = 6 + 2!$

Examples = 3!

Proven! Not!!!!
Euler’s Formula.

Faces: connected regions of the plane.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Examples:

- Triangle: $3 + 2 = 3 + 2$.
- K_4: $4 + 4 = 6 + 2$.
- $K_{2,3}$: $5 + 3 = 6 + 2$.

Proven! Not!!!!
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for

Examples = 3!

Proven! Not!!!!
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for triangle?

Examples = 3!

Proven! Not!!!!
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for triangle? 2
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
triangle? 2
complete on four vertices or K_4?
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
triangle? 2
complete on four vertices or \(K_4 \)? 4
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
 triangle? 2
 complete on four vertices or K_4? 4
 bipartite, complete two/three or $K_{2,3}$?
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$? 3

Examples = 3!
Proven! Not!!!!
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$? 3

Examples = 3!
Proven! Not!!!!
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
 - triangle? 2
 - complete on four vertices or K_4? 4
 - bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
 triangle? 2
 complete on four vertices or K_4? 4
 bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

 Euler's Formula: Connected planar graph has $v + f = e + 2$.
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
triangle? 2
complete on four vertices or \(K_4 \)? 4
bipartite, complete two/three or \(K_{2,3} \)? 3

\(v \) is number of vertices, \(e \) is number of edges, \(f \) is number of faces.

Euler’s Formula: Connected planar graph has \(v + f = e + 2 \).

Triangle:
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for

- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
 triangle? 2
 complete on four vertices or K_4? 4
 bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$

K_4:
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
triangle? 2
complete on four vertices or K_4? 4
bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$

K_4: $4 + 4 = 6 + 2!$
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
 triangle? 2
 complete on four vertices or K_4? 4
 bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2$!
K_4: $4 + 4 = 6 + 2$!
$K_{2,3}$:
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$
K_4: $4 + 4 = 6 + 2!$
$K_{2,3}$: $5 + 3 = 6 + 2!$
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$
K_4: $4 + 4 = 6 + 2!$
$K_{2,3}$: $5 + 3 = 6 + 2!$
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
 triangle? 2
 complete on four vertices or K_4? 4
 bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$
K_4: $4 + 4 = 6 + 2!$
$K_{2,3}$: $5 + 3 = 6 + 2!$

Examples = 3!
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$
K_4: $4 + 4 = 6 + 2!$
$K_{2,3}$: $5 + 3 = 6 + 2!$

Examples = 3! Proven!
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for

- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$

K_4: $4 + 4 = 6 + 2!$

$K_{2,3}$: $5 + 3 = 6 + 2!$

Examples = 3! Proven! Not!!!!
Euler and Polyhedron.

Greeks knew formula for polyhedron.
Euler and Polyhedron.

Greeks knew formula for polyhedron.
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Faces?

8 + 6 = 12 + 2.

Euler and Polyhedron.

Greeks knew formula for polyhedron.

Faces? 6. Edges?

Greeks couldn't prove it. Induction?

Polyhedron without holes ≡ Planar graphs.

Surround by sphere. Project from point inside polytope onto sphere. Sphere ≡ Plane!

Topologically. Euler proved formula thousands of years later!
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: $v + f = e + 2$.

Greeks couldn't prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes \equiv Planar graphs. Surround by sphere. Project from point inside polytope onto sphere. Sphere \equiv Plane! Topologically. Euler proved formula thousands of years later!
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).

Greeks couldn't prove it. Induction? Remove vertice for polyhedron? Polyhedron without holes \(\equiv \) Planar graphs.

Surround by sphere. Project from point inside polytope onto sphere. Sphere \(\equiv \) Plane! Topologically. Euler proved formula thousands of years later!
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph:
\[v + f = e + 2. \]

Greeks couldn’t prove it. Induction? Remove vertice for polyhedron? Polyhedron without holes \(\equiv \) Planar graphs. Surround by sphere. Project from point inside polytope onto sphere. Sphere \(\equiv \) Plane! Topologically. Euler proved formula thousands of years later!
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: $v + f = e + 2$.
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[8 + 6 = 12 + 2. \]
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).

\[8 \text{ } + \text{ } 6 \text{ } = \text{ } 12 \text{ } + \text{ } 2. \]

Greeks couldn’t prove it.
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).

\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction?
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: $v + f = e + 2$.

$8 + 6 = 12 + 2$.

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2\).
\[8 + 6 = 12 + 2.\]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes \(\equiv \).
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction? Remove vertice for polyhedron?

Polyhedron without holes \(\equiv \) Planar graphs.
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Edges? 12.
Vertices? 8.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes \(\equiv \) Planar graphs.

Surround by sphere.
Euler and Polyhedron.

 Greeks knew formula for polyhedron.

 Euler: Connected planar graph: \(v + f = e + 2 \).
 \(8 + 6 = 12 + 2 \).

 Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

 Polyhedron without holes \(\equiv \) Planar graphs.
 Surround by sphere.
 Project from point inside polytope onto sphere.
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes \(\equiv \) Planar graphs.

Surround by sphere.
Project from point inside polytope onto sphere.
Sphere
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes \(\equiv \) Planar graphs.

Surround by sphere.
Project from point inside polytope onto sphere.
Sphere \(\equiv \) Plane!
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[8 + 6 = 12 + 2 \]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes \(\equiv \) Planar graphs.

Surround by sphere.
Project from point inside polytope onto sphere.
Sphere \(\equiv \) Plane! Topologically.
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes \(\equiv \) Planar graphs.

Surround by sphere.
Project from point inside polytope onto sphere.
Sphere \(\equiv \) Plane! Topologically.

Euler proved formula thousands of years later!
Euler and planarity of K_5 and $K_{3,3}$
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. Face-edge adjacencies. $\geq 3f$
Euler: \(v + f = e + 2 \) for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. \(\geq 3f \)
Each edge is adjacent to exactly two faces.

\[10 \neq 3(5) - 6 = 9 \Rightarrow K_5 \text{ is not planar!} \]

\[9 \leq 2(6) - 4 = 8 \Rightarrow K_{3,3} \text{ is not planar!} \]
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

- Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
- Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$

K_5:
- Edges? 10
- Vertices? 5

$10 \not\leq 3(5) - 6 = 9 \Rightarrow K_5$ is not planar.

$K_{3,3}$:
- Edges? 9
- Vertices? 6

$9 \leq 2(6) - 4 = 8 \Rightarrow K_{3,3}$ is planar!
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$

Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$

$\implies 3f \leq 2e$
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$

$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2$
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$
$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

- Each face is adjacent to at least three edges: face-edge adjacencies $\geq 3f$
- Each edge is adjacent to exactly two faces: face-edge adjacencies $= 2e$

$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

K_5

$K_{3,3}$
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$
$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

K_5 Edges?

$K_{3,3}$ Edges?
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$
$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3} e \geq e + 2 \implies e \leq 3v - 6$

K_5 Edges? $4 + 3 + 2 + 1$
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$

$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

K_5 Edges? $4 + 3 + 2 + 1 = 10$.

$K_{3,3}$ Edges? $6 + 3 + 3 + 1 = 13$.

Sure! But no cycles that are triangles. Face is of length ≥ 4.

$4f \leq 2e$.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$ is not planar!

K_5 is not planar.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$
$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

K_5 Edges? $4 + 3 + 2 + 1 = 10$. Vertices?
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$
\[\implies 3f \leq 2e\]

Euler: $v + \frac{5}{3} e \geq e + 2 \implies e \leq 3v - 6$

Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$
$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$10 \not\leq 3(5) - 6 = 9$.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$
$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$10 \leq 3(5) - 6 = 9. \implies K_5$ is not planar.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$
$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$10 \leq 3(5) - 6 = 9$. $\implies K_5$ is not planar.

$K_{3,3}$?
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$
$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$10 \leq 3(5) - 6 = 9. \implies K_5$ is not planar.

$K_{3,3}$? Edges?
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$
$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$10 \leq 3(5) - 6 = 9. \implies K_5$ is not planar.

Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$

$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3} e \geq e + 2 \implies e \leq 3v - 6$

$10 \leq 3(5) - 6 = 9. \implies K_5$ is not planar.

Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$
$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3} e \geq e + 2 \implies e \leq 3v - 6$

$10 \not\leq 3(5) - 6 = 9. \implies K_5$ is not planar.

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \not\leq 3(6) - 6$?
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$
$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

10 $\leq 3(5) - 6 = 9$. $\implies K_5$ is not planar.

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$

$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$10 \leq 3(5) - 6 = 9$. $\implies K_5$ is not planar.

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!
But no cycles that are triangles.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$

Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$

$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$10 \leq 3(5) - 6 = 9. \implies K_5$ is not planar.

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!
But no cycles that are triangles. Face is of length ≥ 4.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$
$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$10 \leq 3(5) - 6 = 9. \implies K_5$ is not planar.

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!
But no cycles that are triangles. Face is of length ≥ 4.
.... $4f \leq 2e$.
Euler and planarity of K_5 **and** $K_{3,3}$

Euler: \(v + f = e + 2 \) for connected planar graph.

- Each face is adjacent to at least three edges. face-edge adjacencies. \(\geq 3f \)
- Each edge is adjacent to exactly two faces. face-edge adjacencies. \(= 2e \)

\[3f \leq 2e \]

Euler: \(v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6 \)

 - \(10 \leq 3(5) - 6 = 9 \). \(\implies K_5 \) is not planar.

- $K_{3,3}$? Edges? 9. Vertices. 6. \(9 \leq 3(6) - 6 \)? Sure!
- But no cycles that are triangles. Face is of length \(\geq 4 \).
 - \(4f \leq 2e \)
 - Euler: \(v + \frac{1}{2}e \geq e + 2 \)
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

- Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
- Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$

$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$10 \leq 3(5) - 6 = 9. \implies K_5$ is not planar.

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!
But no cycles that are triangles. Face is of length ≥ 4.
$\implies 4f \leq 2e.$
Euler: $v + \frac{1}{2}e \geq e + 2 \implies e \leq 2v - 4$
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges.

Each edge is adjacent to exactly two faces.

$\Rightarrow 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$10 \leq 3(5) - 6 = 9. \implies K_5$ is not planar.

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!

But no cycles that are triangles. Face is of length ≥ 4.

$\ldots 4f \leq 2e$.

Euler: $v + \frac{1}{2}e \geq e + 2 \implies e \leq 2v - 4$
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$

Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$

$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$10 \leq 3(5) - 6 = 9. \implies K_5$ is not planar.

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!

But no cycles that are triangles. Face is of length ≥ 4.

$\implies 4f \leq 2e$.

Euler: $v + \frac{1}{2}e \geq e + 2 \implies e \leq 2v - 4$

$9 \leq 2(6) - 4.$
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

Each face is adjacent to at least three edges. face-edge adjacencies. $\geq 3f$
Each edge is adjacent to exactly two faces. face-edge adjacencies. $= 2e$
$\implies 3f \leq 2e$

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$10 \not\leq 3(5) - 6 = 9. \implies K_5$ is not planar.

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!
But no cycles that are triangles. Face is of length ≥ 4.
$\implies 4f \leq 2e$.
Euler: $v + \frac{1}{2}e \geq e + 2 \implies e \leq 2v - 4$
$9 \not\leq 2(6) - 4. \implies K_{3,3}$ is not planar!
A tree is a connected acyclic graph.
A tree is a connected acyclic graph.

To tree or not to tree!
A tree is a connected acyclic graph.

To tree or not to tree!
A tree is a connected acyclic graph.

To tree or not to tree!

Yes.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.
A tree is a connected acyclic graph.

To tree or not to tree!

Faces?
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.

Vertices/Edges.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.

Vertices/Edges. Notice: \(e = v - 1 \) for tree.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.
Vertices/Edges. Notice: $e = v - 1$ for tree.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.
Vertices/Edges. Notice: $e = v - 1$ for tree.

One face for trees!
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.
Vertices/Edges. Notice: $e = v - 1$ for tree.

One face for trees!

Euler works for trees: $v + f = e + 2$.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.

Vertices/Edges. Notice: $e = v - 1$ for tree.

One face for trees!

Euler works for trees: $v + f = e + 2$.
$v + 1 = v - 1 + 2$
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.

Vertices/Edges. Notice: $e = v - 1$ for tree.

One face for trees!

Euler works for trees: $v + f = e + 2$.
$v + 1 = v - 1 + 2$
Euler: Connected planar graph has \(v + f = e + 2 \).
Euler’s formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch:
Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base:

...
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0$,
Euler’s formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).
Base: \(e = 0, v = f = 1 \).
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0, v = f = 1$. $p(0)$ (base case) holds
Euler’s formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).

Base: \(e = 0, \ v = f = 1 \). \(p(0) \) (base case) holds

Induction Step:
Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).
Base: \(e = 0, \ v = f = 1 \). \(p(0) \) (base case) holds
Induction Step:
 - If it is a tree.
Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0$, $v = f = 1$. $p(0)$ (base case) holds
Induction Step:
 - If it is a tree. Done.
Euler's formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0$, $v = f = 1$. $p(0)$ (base case) holds
Induction Step:
 - If it is a tree. Done.
 - If not a tree.
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0$, $v = f = 1$. $p(0)$ (base case) holds
Induction Step:
 If it is a tree. Done.
 If not a tree.
 Find a cycle.
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0$, $v = f = 1$. $p(0)$ (base case) holds
Induction Step:
 If it is a tree. Done.
 If not a tree.
 Find a cycle. Remove edge.
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0$, $v = f = 1$. $p(0)$ (base case) holds
Induction Step:
 - If it is a tree. Done.
 - If not a tree.
 - Find a cycle. Remove edge.

![Diagram of a graph](attachment:image)

Outer face.

Joins two faces.
Euler’s formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).
Base: \(e = 0, \; v = f = 1 \). \(p(0) \) (base case) holds
Induction Step:
 If it is a tree. Done.
 If not a tree.
 Find a cycle. Remove edge.
 Joins two faces.
New graph: \(\nu \)-vertices.
Euler’s formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).
Base: \(e = 0, \ v = f = 1 \). \(p(0) \) (base case) holds
Induction Step:
 If it is a tree. Done.
 If not a tree.
 Find a cycle. Remove edge.

\[
\begin{align*}
 \text{Outer face.} \\
 \text{Joins two faces.} \\
 \text{New graph: } v \text{-vertices. } e - 1 \text{ edges.}
\end{align*}
\]
Euler’s formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).

Base: \(e = 0, \ v = f = 1 \). \(p(0) \) (base case) holds

Induction Step:
- If it is a tree. Done.
- If not a tree.
 - Find a cycle. Remove edge.

![Graph](image)

Outer face.

Joins two faces.

New graph: \(v \)-vertices. \(e - 1 \) edges. \(f - 1 \) faces.
Euler’s formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).
Base: \(e = 0, v = f = 1 \). \(p(0) \) (base case) holds
Induction Step:
 If it is a tree. Done.
 If not a tree.
 Find a cycle. Remove edge.
 Joins two faces.
 New graph: \(v \)-vertices. \(e - 1 \) edges. \(f - 1 \) faces. Planar.
Euler’s formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).
Base: \(e = 0, \ v = f = 1 \). \(P(0) \) (base case) holds
Induction Step:
 If it is a tree. Done.
 If not a tree.
 Find a cycle. Remove edge.

Joins two faces.
New graph: \(v \)-vertices. \(e-1 \) edges. \(f-1 \) faces. Planar.
\(v + (f-1) = (e-1) + 2 \) by induction hypothesis for a smaller graph with \(e-1 \) edges.
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0$, $v = f = 1$. $p(0)$ (base case) holds
Induction Step:
 If it is a tree. Done.
 If not a tree.
 Find a cycle. Remove edge.
 Joins two faces.
New graph: v-vertices. $e - 1$ edges. $f - 1$ faces. Planar.
$v + (f - 1) = (e - 1) + 2$ by induction hypothesis for a smaller graph with $e - 1$ edges.
Therefore $v + f = e + 2$.
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0$, $v = f = 1$. $p(0)$ (base case) holds

Induction Step:
 - If it is a tree. Done.
 - If not a tree.
 - Find a cycle. Remove edge.

Joints two faces.
New graph: v-vertices. $e - 1$ edges. $f - 1$ faces. Planar.
$v + (f - 1) = (e - 1) + 2$ by induction hypothesis for a smaller graph with $e - 1$ edges.
Therefore $v + f = e + 2$. □
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Given $G = (V, E)$, a coloring of G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

![Graph Coloring Diagrams]

Notice that the last one has only three colors, fewer than the number of vertices and fewer than the maximum degree node.

Interesting things to do:

Algorithm!
Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors. Fewer colors than number of vertices.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors. Fewer colors than number of vertices. Fewer colors than max degree node.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
 Fewer colors than number of vertices.
 Fewer colors than max degree node.

Interesting things to do.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!
Planar graphs and maps.

Planar graph coloring \equiv map coloring.
Planar graphs and maps.

Planar graph coloring \equiv map coloring.

Four color theorem is about planar graphs!
Theorem: Every planar graph can be colored with six colors.
Theorem: Every planar graph can be colored with six colors.

Proof:
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
 From Euler's Formula.
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6\) for any planar graph.
 From Euler's Formula.

Total degree: \(2e\)
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
 From Euler's Formula.

Total degree: $2e$
Average degree: $\leq \frac{2e}{v}$
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph.
 From Euler’s Formula.

Total degree: \(2e \)
Average degree: \(\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \)
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
 - From Euler’s Formula.

Total degree: $2e$
Average degree: \[\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}. \]
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph.

From Euler’s Formula.

Total degree: \(2e \)
Average degree: \(\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v} \).

There exists a vertex with degree \(< 6 \)
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
 From Euler’s Formula.

Total degree: $2e$
Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
 From Euler’s Formula.

Total degree: $2e$
Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v - 6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
 From Euler’s Formula.

Total degree: $2e$
Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
 Inductively color remaining graph.
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
 From Euler’s Formula.

Total degree: $2e$
Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.

 Remove vertex v of degree at most 5.
 Inductively color remaining graph.
 Color is available for v since only five neighbors...
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph.
 From Euler's Formula.

Total degree: \(2e \)
Average degree: \(\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v} \).

There exists a vertex with degree \(< 6 \) or at most 5.

Remove vertex \(v \) of degree at most 5.
 Inductively color remaining graph.
 Color is available for \(v \) since only five neighbors...
 and only five colors are used.
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph.
 From Euler's Formula.

Total degree: \(2e \)
Average degree: \(\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v} \).

There exists a vertex with degree \(< 6\) or at most 5.

Remove vertex \(v \) of degree at most 5.
 Inductively color remaining graph.
 Color is available for \(v \) since only five neighbors...
 and only five colors are used.

\(\square \)
Theorem: Every planar graph can be colored with five colors.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

m Assume neighbors are colored all differently.

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.
Contradiction.
Can recolor one of the neighbors.
And recolor "center" vertex.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

m Assume neighbors are colored all differently.
Otherwise done.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse. Assume neighbors are colored all differently. Otherwise done. Switch green to blue in component.

Planar. ⇒ paths intersect at a vertex!

What color is it? Must be blue or green to be on that path. Must be red or orange to be on that path. Contradiction. Can recolor one of the neighbors. And recolor “center” vertex.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.
- Assume neighbors are colored all differently.
 - Otherwise done.
- Switch green to blue in component.
 - Done.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

- Assume neighbors are colored all differently.
 Otherwise done.

 Switch green to blue in component.
 Done. Unless blue-green path to blue.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

m Assume neighbors are colored all differently.
Otherwise done.
Switch green to blue in component.
Done. Unless blue-green path to blue.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

m Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.
Switch red to orange in its component.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

- m Assume neighbors are colored all differently.
 Otherwise done.
- Switch green to blue in component.
 Done. Unless blue-green path to blue.
- Switch red to orange in its component.
 Done.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

- Assume neighbors are colored all differently.
 - Otherwise done.

 Switch green to blue in component.
 - Done. Unless blue-green path to blue.

 Switch red to orange in its component.
 - Done. Unless red-orange path to red.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.
- m Assume neighbors are colored all differently.
 - Otherwise done.
- Switch green to blue in component.
 - Done. Unless blue-green path to blue.
- Switch red to orange in its component.
 - Done. Unless red-orange path to red.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.
- Assume neighbors are colored all differently.
 - Otherwise done.
- Switch green to blue in component.
 - Done. **Unless blue-green** path to blue.
- Switch red to orange in its component.
 - Done. **Unless red-orange** path to red.

Planar.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.
- m Assume neighbors are colored all differently.
 - Otherwise done.
- Switch green to blue in component.
 - Done. Unless blue-green path to blue.
- Switch red to orange in its component.
 - Done. Unless red-orange path to red.

Planar. \implies paths intersect at a vertex!
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

- Assume neighbors are colored all differently.
 Otherwise done.
- Switch green to blue in component.
 Done. **Unless blue-green path to blue.**
- Switch red to orange in its component.
 Done. **Unless red-orange path to red.**

Planar. \implies paths intersect at a vertex!

What color is it?
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:

Again with the degree 5 vertex. Again recurse.

- m Assume neighbors are colored all differently.
 - Otherwise done.
- Switch green to blue in component.
 - Done. Unless **blue-green** path to blue.
- Switch red to orange in its component.
 - Done. Unless **red-orange** path to red.

Planar. \implies paths intersect at a vertex!

What color is it?
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

m Assume neighbors are colored all differently.
 Otherwise done.
Switch green to blue in component.
 Done. Unless blue-green path to blue.
Switch red to orange in its component.
 Done. Unless red-orange path to red.

Planar. \(\Rightarrow\) paths intersect at a vertex!

What color is it?
 Must be blue or green to be on that path.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

m Assume neighbors are colored all differently.
Otherwise done.
Switch green to blue in component.
Done. Unless blue-green path to blue.
Switch red to orange in its component.
Done. Unless red-orange path to red.

Planar. \(\Rightarrow\) paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

m Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch red to orange in its component.
Done. Unless red-orange path to red.

Planar. \(\Rightarrow\) paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.
 m Assume neighbors are colored all differently.
 Otherwise done.
Switch green to blue in component.
 Done. Unless blue-green path to blue.
Switch red to orange in its component.
 Done. Unless red-orange path to red.
Planar. \implies paths intersect at a vertex!

What color is it?
 Must be blue or green to be on that path.
 Must be red or orange to be on that path.
Contradiction.
Can recolor one of the neighbors.
And recolor “center” vertex.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

- Assume neighbors are colored all differently.
 - Otherwise done.
- Switch green to blue in component.
 - Done. Unless blue-green path to blue.
- Switch red to orange in its component.
 - Done. Unless red-orange path to red.

Planar. \Rightarrow paths intersect at a vertex!

What color is it?
 - Must be blue or green to be on that path.
 - Must be red or orange to be on that path.

Contradiction.
Can recolor one of the neighbors.
And recolor “center” vertex.
Four Color Theorem

Theorem:
Any planar graph can be colored with four colors.

Proof:
Not Today!
Theorem: Any planar graph can be colored with four colors.
Theorem: Any planar graph can be colored with four colors.

Proof:
Theorem: Any planar graph can be colored with four colors.

Proof: Not Today!
Theorem: Any planar graph can be colored with four colors.

Proof: Not Today!