Bayes’ Rule, Mutual Independence, Collisions and Collecting
Alex Psomas: Lecture 15.

Bayes’ Rule, Mutual Independence, Collisions and Collecting

1. Conditional Probability
2. Independence
3. Bayes’ Rule
4. Balls and Bins
5. Coupons
Conditional Probability: Review

Recall:

\[P[A \mid B] = \frac{P[A \cap B]}{P[B]} \]

Hence, \[P[A \cap B] = P[B] \cdot P[A \mid B] = P[A] \cdot P[B \mid A] \].

- A and B are positively correlated if \(P[A \mid B] > P[A] \), i.e., if \(P[A \cap B] > P[A] \cdot P[B] \).
- A and B are negatively correlated if \(P[A \mid B] < P[A] \), i.e., if \(P[A \cap B] < P[A] \cdot P[B] \).
- A and B are independent if \(P[A \mid B] = P[A] \), i.e., if \(P[A \cap B] = P[A] \cdot P[B] \).

Note:

- If \(B \subset A \) and \(P[A] \neq 1 \), \(P[B] \neq 0 \), \(A \) and \(B \) are positively correlated.

\((P[A \mid B] = 1 > P[A]) \)

Note:

- If \(A \cap B \neq \emptyset \), \(P[A] \neq 0 \), \(P[B] \neq 0 \), \(A \) and \(B \) are negatively correlated.

\((P[A \mid B] = 0 < P[A]) \)
Conditional Probability: Review

Recall:

- \(\Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} \).

- \(A \) and \(B \) are positively correlated if \(\Pr[A|B] > \Pr[A] \), i.e., if \(\Pr[A \cap B] > \Pr[A] \Pr[B] \).

- \(A \) and \(B \) are negatively correlated if \(\Pr[A|B] < \Pr[A] \), i.e., if \(\Pr[A \cap B] < \Pr[A] \Pr[B] \).

- \(A \) and \(B \) are independent if \(\Pr[A|B] = \Pr[A] \), i.e., if \(\Pr[A \cap B] = \Pr[A] \Pr[B] \).

- Note: \(B \subset A \), and \(\Pr[A] \neq 1 \), \(\Pr[B] \neq 0 \), \(\Rightarrow A \) and \(B \) are positively correlated (\(\Pr[A|B] = 1 > \Pr[A] \)).

- Note: \(A \cap B = \emptyset \), \(\Pr[A] \neq 0 \), \(\Pr[B] \neq 0 \), \(\Rightarrow A \) and \(B \) are negatively correlated (\(\Pr[A|B] = 0 < \Pr[A] \)).
Conditional Probability: Review

Recall:

- \(\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]} \).

- Hence, \(\Pr[A \cap B] = \Pr[B]\Pr[A|B] = \Pr[A]\Pr[B|A] \).
Conditional Probability: Review

Recall:

- \(\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]} \).
- Hence, \(\Pr[A \cap B] = \Pr[B] \Pr[A|B] = \Pr[A] \Pr[B|A] \).
- A and B are \textit{positively correlated} if \(\Pr[A|B] > \Pr[A] \),
Conditional Probability: Review

Recall:

- \(Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} \).
- \(A \) and \(B \) are positively correlated if \(Pr[A|B] > Pr[A] \), i.e., if \(Pr[A \cap B] > Pr[A]Pr[B] \).
Conditional Probability: Review

Recall:

- $P(A|B) = \frac{P(A \cap B)}{P(B)}$.

- Hence, $P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$.

- A and B are positively correlated if $P(A|B) > P(A)$, i.e., if $P(A \cap B) > P(A)P(B)$.

- A and B are negatively correlated if $P(A|B) < P(A)$,
Conditional Probability: Review

Recall:

- $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$.

- A and B are positively correlated if $Pr[A|B] > Pr[A]$, i.e., if $Pr[A \cap B] > Pr[A]Pr[B]$.

- A and B are negatively correlated if $Pr[A|B] < Pr[A]$, i.e., if $Pr[A \cap B] < Pr[A]Pr[B]$.
Conditional Probability: Review

Recall:

- \(Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} \).
- \(A \) and \(B \) are positively correlated if \(Pr[A|B] > Pr[A] \), i.e., if \(Pr[A \cap B] > Pr[A]Pr[B] \).
- \(A \) and \(B \) are negatively correlated if \(Pr[A|B] < Pr[A] \), i.e., if \(Pr[A \cap B] < Pr[A]Pr[B] \).
- \(A \) and \(B \) are independent if \(Pr[A|B] = Pr[A] \).
Conditional Probability: Review

Recall:

- \(Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} \).
- \(A \) and \(B \) are positively correlated if \(Pr[A|B] > Pr[A] \), i.e., if \(Pr[A \cap B] > Pr[A]Pr[B] \).
- \(A \) and \(B \) are negatively correlated if \(Pr[A|B] < Pr[A] \), i.e., if \(Pr[A \cap B] < Pr[A]Pr[B] \).
- \(A \) and \(B \) are independent if \(Pr[A|B] = Pr[A] \), i.e., if \(Pr[A \cap B] = Pr[A]Pr[B] \).
Conditional Probability: Review

Recall:

- $\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]}$.

- Hence, $\Pr[A \cap B] = \Pr[B] \Pr[A|B] = \Pr[A] \Pr[B|A]$.

- A and B are positively correlated if $\Pr[A|B] > \Pr[A]$, i.e., if $\Pr[A \cap B] > \Pr[A] \Pr[B]$.

- A and B are negatively correlated if $\Pr[A|B] < \Pr[A]$, i.e., if $\Pr[A \cap B] < \Pr[A] \Pr[B]$.

- A and B are independent if $\Pr[A|B] = \Pr[A]$, i.e., if $\Pr[A \cap B] = \Pr[A] \Pr[B]$.

- Note: $B \subset A$, and $\Pr[A] \neq 1$, $\Pr[B] \neq 0$, $\implies A$ and B are...
Conditional Probability: Review

Recall:

- $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$.

- A and B are positively correlated if $Pr[A|B] > Pr[A]$, i.e., if $Pr[A \cap B] > Pr[A]Pr[B]$.

- A and B are negatively correlated if $Pr[A|B] < Pr[A]$, i.e., if $Pr[A \cap B] < Pr[A]Pr[B]$.

- A and B are independent if $Pr[A|B] = Pr[A]$, i.e., if $Pr[A \cap B] = Pr[A]Pr[B]$.

- Note: $B \subset A$, and $Pr[A] \neq 1$, $Pr[B] \neq 0$, $\Rightarrow A$ and B are positively correlated.
Conditional Probability: Review

Recall:

- \(Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} \).
- \(A \) and \(B \) are positively correlated if \(Pr[A|B] > Pr[A] \),
 i.e., if \(Pr[A \cap B] > Pr[A]Pr[B] \).
- \(A \) and \(B \) are negatively correlated if \(Pr[A|B] < Pr[A] \),
 i.e., if \(Pr[A \cap B] < Pr[A]Pr[B] \).
- \(A \) and \(B \) are independent if \(Pr[A|B] = Pr[A] \),
 i.e., if \(Pr[A \cap B] = Pr[A]Pr[B] \).
- Note: \(B \subset A \), and \(Pr[A] \neq 1, Pr[B] \neq 0 \), \(\Rightarrow \) \(A \) and \(B \) are positively correlated. (\(Pr[A|B] = 1 > Pr[A] \))
Conditional Probability: Review

Recall:

- $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$.
- A and B are positively correlated if $Pr[A|B] > Pr[A]$, i.e., if $Pr[A \cap B] > Pr[A]Pr[B]$.
- A and B are negatively correlated if $Pr[A|B] < Pr[A]$, i.e., if $Pr[A \cap B] < Pr[A]Pr[B]$.
- A and B are independent if $Pr[A|B] = Pr[A]$, i.e., if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Note: $B \subset A$, and $Pr[A] \neq 1$, $Pr[B] \neq 0$, ⇒ A and B are positively correlated. ($Pr[A|B] = 1 > Pr[A]$)
- Note: $A \cap B = \emptyset$, $Pr[A]$, $Pr[B] \neq 0$, ⇒ A and B are
Conditional Probability: Review

Recall:

1. \(\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]} \).
2. Hence, \(\Pr[A \cap B] = \Pr[B] \Pr[A|B] = \Pr[A] \Pr[B|A] \).
3. \(A \) and \(B \) are positively correlated if \(\Pr[A|B] > \Pr[A] \),
 i.e., if \(\Pr[A \cap B] > \Pr[A] \Pr[B] \).
4. \(A \) and \(B \) are negatively correlated if \(\Pr[A|B] < \Pr[A] \),
 i.e., if \(\Pr[A \cap B] < \Pr[A] \Pr[B] \).
5. \(A \) and \(B \) are independent if \(\Pr[A|B] = \Pr[A] \),
 i.e., if \(\Pr[A \cap B] = \Pr[A] \Pr[B] \).
6. Note: \(B \subset A \), and \(\Pr[A] \neq 1, \Pr[B] \neq 0 \), \(\Rightarrow \) \(A \) and \(B \) are positively correlated. (\(\Pr[A|B] = 1 > \Pr[A] \))
7. Note: \(A \cap B = \emptyset \), \(\Pr[A], \Pr[B] \neq 0 \), \(\Rightarrow \) \(A \) and \(B \) are negatively correlated.
Conditional Probability: Review

Recall:

- \(Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} \).

- \(A \) and \(B \) are positively correlated if \(Pr[A|B] > Pr[A] \),
 i.e., if \(Pr[A \cap B] > Pr[A]Pr[B] \).

- \(A \) and \(B \) are negatively correlated if \(Pr[A|B] < Pr[A] \),
 i.e., if \(Pr[A \cap B] < Pr[A]Pr[B] \).

- \(A \) and \(B \) are independent if \(Pr[A|B] = Pr[A] \),
 i.e., if \(Pr[A \cap B] = Pr[A]Pr[B] \).

- Note: \(B \subset A \), and \(Pr[A] \neq 1, Pr[B] \neq 0 \), \(\Rightarrow \) \(A \) and \(B \) are positively correlated. \((Pr[A|B] = 1 > Pr[A]) \)

- Note: \(A \cap B = \emptyset \), \(Pr[A], Pr[B] \neq 0 \), \(\Rightarrow \) \(A \) and \(B \) are negatively correlated. \((Pr[A|B] = 0 < Pr[A]) \)
Monty Hall

3 closed doors. Behind one of the doors there is a prize (car). The others have goats.

You pick a door. Say door number 1. I open door 2 or door 3. One of the two that I know doesn’t have the prize. Say it was door 2. I ask: Would you like to change your door to number 3?

Question: What should you do in order to maximize the probability of winning?
Monty Hall

3 closed doors.
Monty Hall

3 closed doors. Behind one of the doors there is a prize (car).
3 closed doors. Behind one of the doors there is a prize (car). The others have goats.
Monty Hall

3 closed doors. Behind one of the doors there is a prize (car). The others have goats.

You pick a door. Say door number 1
Monty Hall

3 closed doors. Behind one of the doors there is a prize (car). The others have goats.

You pick a door. Say door number 1

I open door 2 or door 3. One of the two that I know doesn’t have the prize.
Monty Hall

3 closed doors. Behind one of the doors there is a prize (car). The others have goats.

You pick a door. Say door number 1

I open door 2 or door 3. One of the two that I know doesn’t have the prize. Say it was door 2
Monty Hall

3 closed doors. Behind one of the doors there is a prize (car). The others have goats.

You pick a door. Say door number 1

I open door 2 or door 3. One of the two that I know doesn’t have the prize. Say it was door 2

I ask: Would you like to change your door to number 3?
3 closed doors. Behind one of the doors there is a prize (car). The others have goats.

You pick a door. Say door number 1

I open door 2 or door 3. One of the two that I know doesn’t have the prize. Say it was door 2

I ask: **Would you like to change your door to number 3?**

Question: What should you do in order to maximize the probability of winning?
Monty Hall

Change!!!!

What is the probability that the prize is in door 3?

How does that make any sense???

Say the original door where the prize is random.

So each door has probability \(\frac{1}{3} \).

You pick door 1.

What's the probability that it's in either 2 or 3?

The door I opened wasn't random! I knew it didn't have a prize!!

Therefore, switching, is like getting to pick two doors at the beginning!
Monty Hall

Change!!!!
Monty Hall

Change!!!!

What is the probability that the prize is in door 3? \(\frac{2}{3}\)!
Change!!!!

What is the probability that the prize is in door 3? \(\frac{2}{3} \)

How does that make any sense????
Monty Hall

Change!!!!

What is the probability that the prize is in door 3? \(\frac{2}{3} \)!

How does that make any sense????

Say the original door where the prize is random.
Monty Hall

Change!!!!

What is the probability that the prize is in door 3? $\frac{2}{3}$!

How does that make any sense????

Say the original door where the prize is random. So each door has probability $\frac{1}{3}$.

Monty Hall

Change!!!!

What is the probability that the prize is in door 3? \(\frac{2}{3} \! \)

How does that make any sense????

Say the original door where the prize is random. So each door has probability \(\frac{1}{3} \).

You pick door 1.
Monty Hall

Change!!!!

What is the probability that the prize is in door 3? \(\frac{2}{3} \)!

How does that make any sense????

Say the original door where the prize is random. So each door has probability \(\frac{1}{3} \).

You pick door 1. What’s the probability that it’s in either 2 or 3?
Monty Hall

Change!!!!

What is the probability that the prize is in door 3? \(\frac{2}{3} \)!

How does that make any sense????

Say the original door where the prize is random. So each door has probability \(\frac{1}{3} \).

You pick door 1. What’s the probability that it’s in either 2 or 3? \(\frac{2}{3} \)
Monty Hall

Change!!!!

What is the probability that the prize is in door 3? \(\frac{2}{3}\)!

How does that make any sense????

Say the original door where the prize is random. So each door has probability \(\frac{1}{3}\).

You pick door 1. What’s the probability that it’s in either 2 or 3? \(\frac{2}{3}\)

The door I opened wasn’t random! I knew it didn’t have a prize!!
Change!!!!

What is the probability that the prize is in door 3? \(\frac{2}{3} \)!

How does that make any sense????

Say the original door where the prize is random. So each door has probability \(\frac{1}{3} \).

You pick door 1. What’s the probability that it’s in either 2 or 3? \(\frac{2}{3} \)

The door I opened wasn’t random! I knew it didn’t have a prize!! Therefore, switching, is like getting to pick two doors at the beginning!
...and my yard has so much grass, and I'll teach you tricks, and...
I throw 5 (indistinguishable) balls in two bins.
I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?
I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: (5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5).
Balls in bins

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is $\frac{1}{6}$.
I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: (5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5). Probability that the first bin is empty is $\frac{1}{6}$.

2. Approach 2: I pretend I can tell the balls apart. Probability that the first bin is empty is $\frac{1}{2}$.

The fact that I can tell them apart shouldn't change the probability. Well... I guess probability is wrong... Or...... Could one of the approaches be wrong???

Approach 1 is WRONG! Why did we divide by $|\Omega|$???
Balls in bins

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: (5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5). Probability that the first bin is empty is \(\frac{1}{6} \).

2. Approach 2: I pretend I can tell the balls apart. There are \(2^5 \) outcomes:
I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: $(5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5)$. Probability that the first bin is empty is $\frac{1}{6}$

2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: $(1, 1, 1, 1, 1)$,
Balls in bins

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: (5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5). Probability that the first bin is empty is $\frac{1}{6}$.

2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1, 1, 1, 1, 1), (1, 1, 1, 1, 2), \ldots (2, 2, 2, 2, 2).
I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is $\frac{1}{6}$.

2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1,1,1,1,1), (1,1,1,1,2), ... (2,2,2,2,2). $(x,1,x,x,x)$ means that the second ball I threw landed in the first bin.
I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: (5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5). Probability that the first bin is empty is \(\frac{1}{6}\).

2. Approach 2: I pretend I can tell the balls apart. There are \(2^5\) outcomes: (1, 1, 1, 1, 1), (1, 1, 1, 1, 2), \ldots (2, 2, 2, 2, 2). (\(x, 1, x, x, x\)) means that the second ball I threw landed in the first bin. Probability that the first bin is empty is \(\frac{1}{25}\).
Balls in bins

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: (5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5). Probability that the first bin is empty is $\frac{1}{6}$.

2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: $(1, 1, 1, 1, 1)$, $(1, 1, 1, 1, 2)$, \ldots $(2, 2, 2, 2, 2)$. $(x, 1, x, x, x)$ means that the second ball I threw landed in the first bin. Probability that the first bin is empty is $\frac{1}{25}$. The fact that I can tell them apart shouldn’t change the probability.
Balls in bins

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: (5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5). Probability that the first bin is empty is \(\frac{1}{6} \).

2. Approach 2: I pretend I can tell the balls apart. There are \(2^5 \) outcomes: (1, 1, 1, 1, 1), (1, 1, 1, 1, 2), \ldots (2, 2, 2, 2, 2). (x, 1, x, x, x) means that the second ball I threw landed in the first bin. Probability that the first bin is empty is \(\frac{1}{2^5} \). The fact that I can tell them apart shouldn’t change the probability.

Well...
Balls in bins

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: $(5, 0)$, $(4, 1)$, $(3, 2)$, $(2, 3)$, $(1, 4)$, $(0, 5)$. Probability that the first bin is empty is $\frac{1}{6}$

2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: $(1, 1, 1, 1, 1)$, $(1, 1, 1, 1, 2)$, \ldots $(2, 2, 2, 2, 2)$. $(x, 1, x, x, x)$ means that the second ball I threw landed in the first bin. Probability that the first bin is empty is $\frac{1}{25}$. The fact that I can tell them apart shouldn’t change the probability.

Well... I guess probability is wrong...
Balls in bins

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: (5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5). Probability that the first bin is empty is $\frac{1}{6}$

2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1, 1, 1, 1, 1), (1, 1, 1, 1, 2), \ldots (2, 2, 2, 2, 2). $(x, 1, x, x, x)$ means that the second ball I threw landed in the first bin.
Probability that the first bin ie empty is $\frac{1}{2^5}$. The fact that I can tell them apart shouldn’t change the probability.

Well... I guess probability is wrong...
Or.....
Balls in bins

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: (5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5). Probability that the first bin is empty is $\frac{1}{6}$.

2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1, 1, 1, 1, 1), (1, 1, 1, 1, 2), \ldots (2, 2, 2, 2, 2). $(x, 1, x, x, x)$ means that the second ball I threw landed in the first bin. Probability that the first bin is empty is $\frac{1}{2^5}$. The fact that I can tell them apart shouldn’t change the probability.

Well... I guess probability is wrong...

Or...... Could one of the approaches be wrong???
Balls in bins

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: (5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5). Probability that the first bin is empty is \(\frac{1}{6} \).

2. Approach 2: I pretend I can tell the balls apart. There are \(2^5 \) outcomes: (1, 1, 1, 1, 1), (1, 1, 1, 1, 2), \ldots (2, 2, 2, 2, 2). \((x, 1, x, x, x)\) means that the second ball I threw landed in the first bin. Probability that the first bin is empty is \(\frac{1}{2^5} \). The fact that I can tell them apart shouldn’t change the probability.

Well... I guess probability is wrong...
Or..... Could one of the approaches be wrong???
Approach 1 is WRONG!
I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is $\frac{1}{6}$.

2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1,1,1,1,1), (1,1,1,1,2), \ldots (2,2,2,2,2). $(x,1,x,x,x)$ means that the second ball I threw landed in the first bin.

Probability that the first bin is empty is $\frac{1}{2^5}$. The fact that I can tell them apart shouldn’t change the probability.

Well... I guess probability is wrong...

Or...... Could one of the approaches be wrong???

Approach 1 is WRONG! Why did we divide by $|\Omega|$???
Balls in bins

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: (5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5). Probability that the first bin is empty is $\frac{1}{6}$.

2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1, 1, 1, 1, 1), (1, 1, 1, 1, 2), \ldots (2, 2, 2, 2, 2). $(x, 1, x, x, x)$ means that the second ball I threw landed in the first bin. Probability that the first bin is empty is $\frac{1}{2^5}$. The fact that I can tell them apart shouldn’t change the probability.

Well... I guess probability is wrong...
Or...... Could one of the approaches be wrong???
Approach 1 is WRONG! Why did we divide by $|\Omega|$???
Why???????? Nooooooooooooooo
Balls in bins

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

1. Approach 1: There are 6 outcomes: \((5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5)\). Probability that the first bin is empty is \(\frac{1}{6}\).

2. Approach 2: I pretend I can tell the balls apart. There are \(2^5\) outcomes: \((1, 1, 1, 1, 1), (1, 1, 1, 1, 2), \ldots (2, 2, 2, 2, 2)\). \((x, 1, x, x, x)\) means that the second ball I threw landed in the first bin.

 Probability that the first bin is empty is \(\frac{1}{2^5}\). The fact that I can tell them apart shouldn’t change the probability.

Well... I guess probability is wrong...

Or...... Could one of the approaches be wrong???

Approach 1 is WRONG! Why did we divide by \(|\Omega|\)???

Why???????? Noooooooooooxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Conditional Probability: Pictures

Left: A and B are independent. \(\Pr[B] = b_1; \Pr[B|A] = b_2 \).

Middle: A and B are positively correlated. \(\Pr[B|A] > \Pr[B|\bar{A}] = b_2 \). Note: \(\Pr[B] \in (b_2, b_1) \).

Right: A and B are negatively correlated. \(\Pr[B|A] < \Pr[B|\bar{A}] = b_2 \). Note: \(\Pr[B] \in (b_1, b_2) \).
Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

Left: A and B are independent. $\Pr[B] = \frac{1}{2}$; $\Pr[B | A] = \frac{1}{2}$.

Middle: A and B are positively correlated. $\Pr[B | A] = \frac{1}{2}$ > $\Pr[B | \bar{A}] = \frac{1}{2}$. Note: $\Pr[B] \in (\frac{1}{2}, \frac{3}{4})$.

Right: A and B are negatively correlated. $\Pr[B | A] = \frac{1}{2}$ < $\Pr[B | \bar{A}] = \frac{1}{2}$. Note: $\Pr[B] \in (\frac{1}{4}, \frac{1}{2})$.
Illustrations: Pick a point uniformly in the unit square

- **Left:** A and B are independent.
 \[
 \Pr(B) = b; \quad \Pr(B \mid A) = b.
 \]
 Note: $\Pr(B \in (b_2, b_1))$.

- **Middle:** A and B are positively correlated.
 \[
 \Pr(B \mid A) = b_1 > \Pr(B \mid \bar{A}) = b_2.
 \]

- **Right:** A and B are negatively correlated.
 \[
 \Pr(B \mid A) = b_1 < \Pr(B \mid \bar{A}) = b_2.
 \]
 Note: $\Pr(B \in (b_1, b_2))$.

▶
Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- **Left:** A and B are independent.

- **Middle:** A and B are positively correlated.

- **Right:** A and B are negatively correlated.
Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

▶ Left: A and B are independent. $Pr[B] =$

▶ Middle: A and B are positively correlated. $Pr[B | A] > Pr[B | \neg A]$.
Note: $Pr[B] \in (b_2, b_1)$.

▶ Right: A and B are negatively correlated. $Pr[B | A] < Pr[B | \neg A]$.
Note: $Pr[B] \in (b_1, b_2)$.
Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $Pr[B] = b$;

- Middle: A and B are positively correlated. $Pr[B \mid A] > Pr[B \mid \overline{A}]$.

- Right: A and B are negatively correlated. $Pr[B \mid A] < Pr[B \mid \overline{A}]$. Note: $Pr[B] \in (b_2, b_1)$.
Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

Left: A and B are independent. $Pr[B] = b; Pr[B|A] =$

Middle:A and B are positively correlated. $Pr[B|A] > Pr[B|\bar{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.

Right:A and B are negatively correlated. $Pr[B|A] < Pr[B|\bar{A}] = b_2$. Note: $Pr[B] \in (b_1, b_2)$.
Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- **Left:** A and B are independent. $\Pr[B] = b; \Pr[B|A] = b$.
Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- **Left:** A and B are independent. $Pr[B] = b; Pr[B|A] = b$.
- **Middle:** A and B are positively correlated. $Pr[B|A] = b_1 > Pr[B|\bar{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
- **Right:** A and B are negatively correlated. $Pr[B|A] = b_1 < Pr[B|\bar{A}] = b_2$. Note: $Pr[B] \in (b_1, b_2)$.

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- **Left**: A and B are independent. $Pr[B] = b; Pr[B|A] = b$.
- **Middle**: A and B are positively correlated.
- **Right**: A and B are negatively correlated. $Pr[B|A] = b_1 < Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- **Left:** A and B are independent. $\Pr[B] = b; \Pr[B|A] = b$.
- **Middle:** A and B are positively correlated. $\Pr[B|A] =$
- **Right:** A and B are negatively correlated. $\Pr[B|A] =$
Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- **Left:** A and B are independent. $Pr[B] = b; Pr[B|A] = b$.
- **Middle:** A and B are positively correlated. $Pr[B|A] = b_1 > Pr[B|\bar{A}] = \cdots$
- **Right:** A and B are negatively correlated. $Pr[B|A] = b_1 < Pr[B|\bar{A}] = \cdots$
Illustrations: Pick a point uniformly in the unit square

- **Left:** A and B are independent. $Pr[B] = b; Pr[B|A] = b$.
- **Middle:** A and B are positively correlated. $Pr[B|A] = b_1 > Pr[B|\bar{A}] = b_2$.
- **Right:** A and B are negatively correlated. $Pr[B|A] = b_1 < Pr[B|\bar{A}] = b_2$.

Note: $Pr[B] \in (b_2, b_1)$.
Illustrations: Pick a point uniformly in the unit square

- **Left:** A and B are independent. $Pr[B] = b; Pr[B|A] = b$.
- **Middle:** A and B are positively correlated. $Pr[B|A] = b_1 > Pr[B|\bar{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
- **Right:** A and B are negatively correlated. $Pr[B|A] = b_1 < Pr[B|\bar{A}] = b_2$. Note: $Pr[B] \in (b_1, b_2)$.
Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- **Left:** A and B are independent. $Pr[B] = b; Pr[B|A] = b$.
- **Middle:** A and B are positively correlated.
 $Pr[B|A] = b_1 > Pr[B|\bar{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
- **Right:** A and B are
Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- **Left:** A and B are independent. $Pr[B] = b; Pr[B|A] = b$.
- **Middle:** A and B are positively correlated. $Pr[B|A] = b_1 > Pr[B|\bar{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
- **Right:** A and B are negatively correlated.
Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- **Left:** A and B are independent. $Pr[B] = b; Pr[B|A] = b$.

- **Middle:** A and B are positively correlated.
 $Pr[B|A] = b_1 > Pr[B|\bar{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.

- **Right:** A and B are negatively correlated.
 $Pr[B|A] = b_1 < Pr[B|\bar{A}] = b_2$.
Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- **Left:** A and B are independent. $Pr[B] = b; Pr[B|A] = b$.

- **Middle:** A and B are positively correlated.

 $Pr[B|A] = b_1 > Pr[B|\bar{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.

- **Right:** A and B are negatively correlated.

 $Pr[B|A] = b_1 < Pr[B|\bar{A}] = b_2$. Note: $Pr[B] \in (b_1, b_2)$.
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[\Pr[A] = 0.5; \quad \Pr[\bar{A}] = 0.5 \]

\[\Pr[B|A] = 0.5; \quad \Pr[B|\bar{A}] = 0.6 \]

\[\Pr[A \cap B] = 0.5 \times 0.5 = \Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 \approx 0.46 = \text{fraction of } B \text{ that is inside } A \]
Bayes and Biased Coin

\[\Pr[A] = 0.5; \quad \Pr[\neg A] = 0.5 \]

\[\Pr[B | A] = 0.5; \quad \Pr[B | \neg A] = 0.6 \]

\[\Pr[A \cap B] = \Pr[A] \times \Pr[B | A] + \Pr[\neg A] \times \Pr[B | \neg A] \]

\[\approx 0.46 \]

fraction of B that is inside A
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[Pr[A] = \]

\[Pr[A] = Pr[B] \times \frac{Pr[A]}{Pr[A] + Pr[\bar{A}]} + Pr[\bar{A}] \times \frac{Pr[A]}{Pr[A] + Pr[\bar{A}]} \approx 0.46 \]

fraction of \(B \) that is inside \(A \)
Pick a point uniformly at random in the unit square. Then

$$Pr[A] = 0.5;$$
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[P(A) = 0.5; \ P(\bar{A}) = \]

\[P(A) = 0.5 \times 0.5 + 0.5 \times 0.6 = 0.56 \]

\[P(B | A) = \]

\[P(B | \bar{A}) = \]

\[P(A \cap B) = P(A) P(B | A) + P(\bar{A}) P(B | \bar{A}) = 0.56 = P(A) \]

\[\approx 0.46 \]

\[\text{fraction of } B \text{ that is inside } A \]
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[Pr[A] = 0.5; \quad Pr[\overline{A}] = 0.5 \]
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[Pr[A] = 0.5; \ Pr[\overline{A}] = 0.5 \]

\[Pr[B|A] = \]

\[\approx 0.46 \]

\[\text{fraction of } B \text{ that is inside } A \]
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[Pr[A] = 0.5; \ Pr[\bar{A}] = 0.5 \]
\[Pr[B|A] = 0.5; \]
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[Pr[A] = 0.5; Pr[\overline{A}] = 0.5 \]
\[Pr[B|A] = 0.5; Pr[B|\overline{A}] = \]
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[Pr[A] = 0.5; \ Pr[\bar{A}] = 0.5 \]
\[Pr[B|A] = 0.5; \ Pr[B|\bar{A}] = 0.6; \]
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[Pr[A] = 0.5; \ Pr[\bar{A}] = 0.5 \]
\[Pr[B|A] = 0.5; \ Pr[B|\bar{A}] = 0.6; \ Pr[A \cap B] = \]
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[Pr[A] = 0.5; \Pr[\bar{A}] = 0.5 \]
\[Pr[B|A] = 0.5; \Pr[B|\bar{A}] = 0.6; \Pr[A \cap B] = 0.5 \times 0.5 \]
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[Pr[A] = 0.5; \ Pr[\bar{A}] = 0.5 \]
\[Pr[B|A] = 0.5; \ Pr[B|\bar{A}] = 0.6; \ Pr[A \cap B] = 0.5 \times 0.5 \]
\[Pr[B] = \]
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[Pr[A] = 0.5; \ Pr[\bar{A}] = 0.5 \]
\[Pr[B|A] = 0.5; \ Pr[B|\bar{A}] = 0.6; \ Pr[A \cap B] = 0.5 \times 0.5 \]
\[Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 \]
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[
Pr[A] = 0.5; \quad Pr[\bar{A}] = 0.5
\]

\[
Pr[B|A] = 0.5; \quad Pr[B|\bar{A}] = 0.6; \quad Pr[A \cap B] = 0.5 \times 0.5
\]

\[
Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]
\]
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[Pr[A] = 0.5; \ Pr[\bar{A}] = 0.5 \]
\[Pr[B|A] = 0.5; \ Pr[B|\bar{A}] = 0.6; \ Pr[A \cap B] = 0.5 \times 0.5 \]
\[Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}] \]
\[Pr[A|B] = \frac{0.5 \times 0.5}{0.5 \times 0.5 + 0.5 \times 0.6} \]
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[Pr[A] = 0.5; \Pr[\bar{A}] = 0.5 \]

\[Pr[B|A] = 0.5; \Pr[B|\bar{A}] = 0.6; \Pr[A \cap B] = 0.5 \times 0.5 \]

\[Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}] \]

\[Pr[A|B] = \frac{0.5 \times 0.5}{0.5 \times 0.5 + 0.5 \times 0.6} = \frac{Pr[A]Pr[B|A]}{Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]} \]

\[\approx 0.46 \]

fraction of \(B \) that is inside \(A \)
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[Pr[A] = 0.5; \quad Pr[\bar{A}] = 0.5 \]
\[Pr[B|A] = 0.5; \quad Pr[B|\bar{A}] = 0.6; \quad Pr[A \cap B] = 0.5 \times 0.5 \]
\[Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}] \]
\[Pr[A|B] = \frac{0.5 \times 0.5}{0.5 \times 0.5 + 0.5 \times 0.6} = \frac{Pr[A]Pr[B|A]}{Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]} \approx 0.46 \]
Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

\[
\begin{align*}
Pr[A] &= 0.5; \quad Pr[\bar{A}] = 0.5 \\
Pr[B|A] &= 0.5; \quad Pr[B|\bar{A}] = 0.6; \quad Pr[A \cap B] = 0.5 \times 0.5 \\
Pr[B] &= 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}] \\
Pr[A|B] &= \frac{0.5 \times 0.5}{0.5 \times 0.5 + 0.5 \times 0.6} = \frac{Pr[A]Pr[B|A]}{Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]}
\end{align*}
\]

\[\approx 0.46 = \text{fraction of } B \text{ that is inside } A\]
Bayes: General Case

Pick a point uniformly at random in the unit square. Then
\[
\Pr[A_m] = p_m, \quad m = 1, \ldots, M
\]
\[
\Pr[B | A_m] = q_m, \quad m = 1, \ldots, M
\]
\[
\Pr[A_m \cap B] = p_m q_m
\]
\[
\Pr[B] = p_1 q_1 + \cdots + p_M q_M
\]
\[
\Pr[A_m | B] = \frac{p_m q_m}{p_1 q_1 + \cdots + p_M q_M}
\]
the fraction of B inside A_m.

Bayes: General Case

Pr[A_m] = p_m, m = 1, ..., M
Pr[B | A_m] = q_m, m = 1, ..., M
Pr[A_m ∩ B] = p_m q_m
Pr[B] = p_1 q_1 + ... + p_M q_M
Pr[A_m | B] = \frac{p_m q_m}{p_1 q_1 + ... + p_M q_M}

Event B
Bayes: General Case

Pick a point uniformly at random in the unit square. Then
Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$Pr[A_m] = p_m, m = 1, \ldots, M$$
Bayes: General Case

Pick a point uniformly at random in the unit square. Then

\[Pr[A_m] = p_m, \ m = 1, \ldots, M \]
\[Pr[B|A_m] = q_m, \ m = 1, \ldots, M; \]
Bayes: General Case

Pick a point uniformly at random in the unit square. Then

\[Pr[A_m] = p_m, \ m = 1, \ldots, M \]
\[Pr[B|A_m] = q_m, \ m = 1, \ldots, M; \ Pr[A_m \cap B] = \]
Bayes: General Case

Pick a point uniformly at random in the unit square. Then

\[
Pr[A_m] = p_m, \ m = 1, \ldots, M
\]

\[
Pr[B|A_m] = q_m, \ m = 1, \ldots, M; \ Pr[A_m \cap B] = p_m q_m
\]
Bayes: General Case

Pick a point uniformly at random in the unit square. Then

\[
\begin{align*}
Pr[A_m] &= p_m, \quad m = 1, \ldots, M \\
Pr[B|A_m] &= q_m, \quad m = 1, \ldots, M; \quad Pr[A_m \cap B] = p_m q_m \\
Pr[B] &= p_1 q_1 + \cdots + p_M q_M
\end{align*}
\]
Bayes: General Case

Pick a point uniformly at random in the unit square. Then

\[
\Pr[A_m] = p_m, \quad m = 1, \ldots, M \\
\Pr[B|A_m] = q_m, \quad m = 1, \ldots, M; \quad Pr[A_m \cap B] = p_m q_m \\
\Pr[B] = p_1 q_1 + \cdots + p_M q_M \\
\Pr[A_m|B] = \frac{p_m q_m}{p_1 q_1 + \cdots + p_M q_M}
\]
Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$Pr[A_m] = p_m, \ m = 1, \ldots, M$$
$$Pr[B|A_m] = q_m, \ m = 1, \ldots, M; \ Pr[A_m \cap B] = p_m q_m$$
$$Pr[B] = p_1 q_1 + \cdots + p_M q_M$$
$$Pr[A_m|B] = \frac{p_m q_m}{p_1 q_1 + \cdots + p_M q_M} = \text{fraction of } B \text{ inside } A_m.$$
Why do you have a fever?

\[
\Pr[\text{Flu} | \text{High Fever}] = 0.15 \times 0.80 = 0.12 \approx 0.58
\]

\[
\Pr[\text{Ebola} | \text{High Fever}] = 10^{-8} \times 1 = 0.00000001 \approx 5 \times 10^{-8}
\]

\[
\Pr[\text{Other} | \text{High Fever}] = 0.85 \times 0.15 \times 0.80 + 10^{-8} \times 1 = 0.42
\]

The values 0.58, 5 \times 10^{-8}, 0.42 are the posterior probabilities.
Why do you have a fever?

Using Bayes’ rule, we find

\[
\begin{align*}
\text{Pr}[ext{Flu} | \text{High Fever}] &= 0.15 \times 0.80 \times 0.15 \\
\text{Pr}[ext{Ebola} | \text{High Fever}] &= 10^{-8} \times 1 \\
\text{Pr}[ext{Other} | \text{High Fever}] &= 0.85 \times 0.1 \times 0.02 \\
\end{align*}
\]

The values 0.58, 5 \times 10^{-8}, 0.42 are the posterior probabilities.
Why do you have a fever?

Using Bayes’ rule, we find

\[
Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58
\]
Why do you have a fever?

Using Bayes’ rule, we find

\[
Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58
\]

\[
Pr[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}
\]
Why do you have a fever?

Using Bayes’ rule, we find

\[Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58 \]

\[Pr[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8} \]

\[Pr[\text{Other}|\text{High Fever}] = \frac{0.85 \times 0.1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.42 \]
Why do you have a fever?

Using Bayes’ rule, we find

$$Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58$$

$$Pr[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}$$

$$Pr[\text{Other}|\text{High Fever}] = \frac{0.85 \times 0.1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.42$$

The values 0.58, 5×10^{-8}, 0.42 are the posterior probabilities.
Why do you have a fever?
Why do you have a fever?

Our “Bayes’ Square” picture:
Why do you have a fever?

Our “Bayes’ Square” picture:

Prior probabilities

\[\Pr(Fever) = 0.15 \]

\[\Pr(Ebola) = 10^{-8} \]

\[\Pr(Other) = 0.85 \]

Conditional probabilities

\[\Pr(Fever | Flu) = 0.80 \]

\[\Pr(Fever | Ebola) \approx 0 \]

\[\Pr(Fever | Other) = 0.10 \]

\[\frac{58}{100} \text{ of Fever} = \text{Flu} \]

\[\frac{0}{100} \text{ of Fever} = \text{Ebola} \]

\[\frac{42}{100} \text{ of Fever} = \text{Other} \]

Green = Fever

Note that even though

\[\Pr(Fever | Ebola) = 1 \]

one has

\[\Pr(Ebola | Fever) \approx 0 \]

This example shows the importance of the prior probabilities.
Why do you have a fever?

Our “Bayes’ Square” picture:

\[
\begin{array}{c}
\text{Prior probabilities} \\
0.15 \\
10^{-8} \\
0.85 \\
\text{Other} \\
\text{Conditional probabilities} \\
0.80 \\
1 \\
0.15 \\
0.85 \\
0.10 \\
\text{Green = Fever} \\
\end{array}
\]

\[
\begin{align*}
58\% \text{ of Fever} &= \text{Flu} \\
\approx 0\% \text{ of Fever} &= \text{Ebola} \\
42\% \text{ of Fever} &= \text{Other}
\end{align*}
\]

Note that even though \(Pr[\text{Fever} | \text{Ebola}] = 1 \),
Why do you have a fever?

Our “Bayes’ Square” picture:

Note that even though $Pr[\text{Fever}|\text{Ebola}] = 1$, one has $Pr[\text{Ebola}|\text{Fever}] \approx 0$.

58% of Fever = Flu
$\approx 0\%$ of Fever = Ebola
42% of Fever = Other
Why do you have a fever?

Our “Bayes’ Square” picture:

Note that even though $Pr[\text{Fever}|\text{Ebola}] = 1$, one has $Pr[\text{Ebola}|\text{Fever}] \approx 0$.

This example shows the importance of the prior probabilities.
Bayes’ Rule Operations
Bayes’ Rule Operations

Bayes’ Rule is the canonical example of how information changes our opinions.

Environment

Priors: $Pr[A_n]$

Observe B

Bayes’ Rule

Posterior: $Pr[A_n|B]$

Conditional: $Pr[B|A_n]$

[Model of system]
Bayes’ Rule Operations

Bayes’ Rule is the canonical example of how information changes our opinions.
Recall:

\[A \text{ and } B \text{ are independent} \]

\[\Pr[A \cap B] = \Pr[A] \Pr[B] \]

Consider the example below:

\[\begin{array}{cccccc}
 & A_1 & A_2 & A_3 & \overline{B} & \overline{A_2} \\
A_1 & 0.1 & 0.15 & 0.15 & 0.25 & 0.25 \\
A_2 & 0.15 & 0.1 & 0.15 & 0.25 & 0.1 \\
A_3 & 0.25 & 0.15 & 0.1 & 0.25 & 0.1 \\
\end{array} \]

\((A_2, B)\) are independent:

\[\Pr[A_2 | B] = \Pr[A_2] \]

\((A_2, \overline{B})\) are independent:

\[\Pr[A_2 | \overline{B}] = \Pr[A_2] \]

\((A_1, B)\) are not independent:

\[\Pr[A_1 | B] \neq \Pr[A_1] \]
Independence

Recall:

A and B are independent

\[\iff Pr[A \cap B] = Pr[A]Pr[B] \]
Independence

Recall:

\(A \) and \(B \) are independent
\(\iff Pr[A \cap B] = Pr[A]Pr[B] \)
\(\iff Pr[A|B] = Pr[A] \).
Independence

Recall:

\[A \text{ and } B \text{ are independent} \iff Pr[A \cap B] = Pr[A]Pr[B] \]
\[\iff Pr[A|B] = Pr[A]. \]

Consider the example below:
Independence

Recall:

A and B are independent

$\iff Pr[A \cap B] = Pr[A]Pr[B]$

$\iff Pr[A|B] = Pr[A]$.

Consider the example below:

$\begin{array}{c|c|c}
A_1 & B & \bar{B} \\
\hline
0.1 & 0.15 & 0.15 \\
0.25 & 0.25 & 0.25 \\
0.15 & 0.1 & 0.1 \\
\end{array}$

(A_2, B) are independent:

$Pr[A_2|\bar{B}] = Pr[A_2]$.

(A_1, B) are not independent:

$Pr[A_1|B] \neq Pr[A_1]$.

$Pr[A_1|\bar{B}] \neq Pr[A_1]$.

$Pr[A_1] = 0.25$.
Independence

Recall:

A and B are independent

$\iff Pr[A \cap B] = Pr[A]Pr[B]$

$\iff Pr[A|B] = Pr[A]$.

Consider the example below:

$$(A_2, B)$$ are independent: $Pr[A_2|B] = 0.5 = Pr[A_2]$.

$$(A_2, \bar{B})$$ are independent: $Pr[A_2|\bar{B}] = 0.5 = Pr[A_2]$.

$$(A_1, B)$$ are not independent: $Pr[A_1|B]$ is not equal to $Pr[A_1]$.

$$(A_1, \bar{B})$$ are not independent: $Pr[A_1|\bar{B}]$ is not equal to $Pr[A_1]$.

$$(A_3, B)$$ are not independent: $Pr[A_3|B]$ is not equal to $Pr[A_3]$.

$$(A_3, \bar{B})$$ are not independent: $Pr[A_3|\bar{B}]$ is not equal to $Pr[A_3]$.

Independence

Recall:

\[A \text{ and } B \text{ are independent} \iff Pr[A \cap B] = Pr[A]Pr[B] \]
\[\iff Pr[A|B] = Pr[A]. \]

Consider the example below:

\[
\begin{array}{c|c|c}
A & B & \bar{B} \\
\hline
A_1 & 0.1 & 0.15 \\
A_2 & 0.25 & 0.25 \\
A_3 & 0.15 & 0.1 \\
\end{array}
\]

\((A_2, B)\) are independent: \(Pr[A_2|B] = 0.5 = Pr[A_2].\)
\((A_2, \bar{B})\) are independent:
Independence

Recall:

\[A \text{ and } B \text{ are independent} \iff Pr[A \cap B] = Pr[A]Pr[B] \]
\[\iff Pr[A|B] = Pr[A]. \]

Consider the example below:

\[(A_2, B) \text{ are independent: } Pr[A_2|B] = 0.5 = Pr[A_2].\]
\[(A_2, \bar{B}) \text{ are independent: } Pr[A_2|\bar{B}] = 0.5 = Pr[A_2].\]
Independence

Recall:

\[A \text{ and } B \text{ are independent} \iff Pr[A \cap B] = Pr[A]Pr[B] \iff Pr[A|B] = Pr[A]. \]

Consider the example below:

\[\begin{array}{c|c|c|c}
\hline
& B & \bar{B} \\
\hline
A_1 & 0.1 & 0.15 \\
A_2 & 0.25 & 0.25 \\
A_3 & 0.15 & 0.1 \\
\hline
\end{array} \]

\((A_2, B)\) are independent: \(Pr[A_2|B] = 0.5 = Pr[A_2] \).

\((A_2, \bar{B})\) are independent: \(Pr[A_2|\bar{B}] = 0.5 = Pr[A_2] \).

\((A_1, B)\) are not independent:

\[Pr[A_1|B] \neq Pr[A_1]. \]
Independence

Recall:

\[A \text{ and } B \text{ are independent } \iff Pr[A \cap B] = Pr[A]Pr[B] \]
\[\iff Pr[A|B] = Pr[A]. \]

Consider the example below:

\[(A_2, B) \text{ are independent: } Pr[A_2|B] = 0.5 = Pr[A_2].\]
\[(A_2, \bar{B}) \text{ are independent: } Pr[A_2|\bar{B}] = 0.5 = Pr[A_2].\]
\[(A_1, B) \text{ are not independent: } Pr[A_1|B] = \frac{0.1}{0.5} = 0.2 \neq Pr[A_1] = 0.25.\]
Pairwise Independence

Flip two fair coins. Let

- $A = \text{‘first coin is H’} = \{HT, HH\};$
- $B = \text{‘second coin is H’} = \{TH, HH\};$
- $C = \text{‘the two coins are different’} = \{TH, HT\}.$
Pairwise Independence

Flip two fair coins. Let

- \(A = \text{‘first coin is H’} = \{HT, HH\}; \)
- \(B = \text{‘second coin is H’} = \{TH, HH\}; \)
- \(C = \text{‘the two coins are different’} = \{TH, HT\}. \)
Pairwise Independence

Flip two fair coins. Let

- \(A = \text{‘first coin is H’} = \{HT, HH\}; \)
- \(B = \text{‘second coin is H’} = \{TH, HH\}; \)
- \(C = \text{‘the two coins are different’} = \{TH, HT\}. \)

\(A, C \) are independent;
Pairwise Independence

Flip two fair coins. Let

- $A = \text{‘first coin is H’} = \{ HT, HH \}$;
- $B = \text{‘second coin is H’} = \{ TH, HH \}$;
- $C = \text{‘the two coins are different’} = \{ TH, HT \}$.

A, C are independent; B, C are independent;
Pairwise Independence

Flip two fair coins. Let

- $A =$ ‘first coin is H’ $= \{HT, HH\}$;
- $B =$ ‘second coin is H’ $= \{TH, HH\}$;
- $C =$ ‘the two coins are different’ $= \{TH, HT\}$.

A, C are independent; B, C are independent; $A \cap B, C$ are not independent.
Pairwise Independence

Flip two fair coins. Let

- $A =$ ‘first coin is H’ $= \{HT, HH\}$;
- $B =$ ‘second coin is H’ $= \{TH, HH\}$;
- $C =$ ‘the two coins are different’ $= \{TH, HT\}$.

A, C are independent; B, C are independent;
$A \cap B, C$ are not independent. $(Pr[A \cap B \cap C] = 0 \neq Pr[A \cap B]Pr[C].)$
Pairwise Independence

Flip two fair coins. Let

- $A = $ ‘first coin is H’ = \{HT, HH\};
- $B = $ ‘second coin is H’ = \{TH, HH\};
- $C = $ ‘the two coins are different’ = \{TH, HT\}.

A, C are independent; B, C are independent; $A \cap B, C$ are not independent. ($Pr[A \cap B \cap C] = 0 \neq Pr[A \cap B]Pr[C].$)

A did not say anything about C and B did not say anything about C, but $A \cap B$ said something about C!
Example 2

Flip a fair coin 5 times.
Example 2

Flip a fair coin 5 times. Let $A_n = ‘\text{coin } n \text{ is H}’$, for $n = 1, \ldots, 5$.
Example 2

Flip a fair coin 5 times. Let $A_n = \text{‘coin } n \text{ is H’}$, for $n = 1, \ldots, 5$. Then,

$$A_m, A_n \text{ are independent for all } m \neq n.$$
Example 2

Flip a fair coin 5 times. Let $A_n = \text{`coin } n \text{ is H'},$ for $n = 1, \ldots, 5.$

Then,

A_m, A_n are independent for all $m \neq n.$

Also,

A_1 and $A_3 \cap A_5$ are independent.
Example 2

Flip a fair coin 5 times. Let $A_n = \text{‘coin } n \text{ is H’}$, for $n = 1, \ldots, 5$.

Then,

A_m, A_n are independent for all $m \neq n$.

Also,

A_1 and $A_3 \cap A_5$ are independent.

Indeed,

$$Pr[A_1 \cap (A_3 \cap A_5)] = \frac{1}{8} = Pr[A_1]Pr[A_3 \cap A_5]$$
Example 2

Flip a fair coin 5 times. Let $A_n = \text{‘coin } n \text{ is H’}$, for $n = 1, \ldots, 5$.
Then,

$$A_m, A_n \text{ are independent for all } m \neq n.$$

Also,

$$A_1 \text{ and } A_3 \cap A_5 \text{ are independent.}$$

Indeed,

$$\Pr[A_1 \cap (A_3 \cap A_5)] = \frac{1}{8} = \Pr[A_1] \Pr[A_3 \cap A_5]$$

. Similarly,

$$A_1 \cap A_2 \text{ and } A_3 \cap A_4 \cap A_5 \text{ are independent.}$$
Example 2

Flip a fair coin 5 times. Let $A_n = \text{\textquoteleft coin } n \text{ is H\textquoteright}$, for $n = 1, \ldots, 5$.

Then, A_m, A_n are independent for all $m \neq n$.

Also, A_1 and $A_3 \cap A_5$ are independent.

Indeed,

$$Pr[A_1 \cap (A_3 \cap A_5)] = \frac{1}{8} = Pr[A_1] Pr[A_3 \cap A_5]$$

Similarly,

$A_1 \cap A_2$ and $A_3 \cap A_4 \cap A_5$ are independent.

This leads to a definition
Definition Mutual Independence

(a) The events A_1, \ldots, A_5 are mutually independent if

$$\Pr \left[\bigcap_{k \in K} A_k \right] = \prod_{k \in K} \Pr[A_k],$$

for all $K \subseteq \{1, \ldots, 5\}$.

(b) More generally, the events $\{A_j, j \in J\}$ are mutually independent if

$$\Pr \left[\bigcap_{k \in K} A_k \right] = \prod_{k \in K} \Pr[A_k],$$

for all finite $K \subseteq J$.

Example: Flip a fair coin forever. Let $A_n = \text{`coin n is H.'}$ Then the events A_n are mutually independent.
Definition Mutual Independence

(a) The events A_1, \ldots, A_5 are mutually independent if

(b) More generally, the events \{ A_j, $j \in J$ \} are mutually independent if

Example: Flip a fair coin forever. Let $A_n = '\text{coin } n \text{ is H}'$. Then the events A_n are mutually independent.
Definition Mutual Independence

(a) The events A_1, \ldots, A_5 are mutually independent if

$$Pr[\cap_{k \in K} A_k] = \prod_{k \in K} Pr[A_k], \text{ for all } K \subseteq \{1, \ldots, 5\}.$$
Definition Mutual Independence

(a) The events A_1, \ldots, A_5 are mutually independent if

$$Pr[\cap_{k \in K} A_k] = \prod_{k \in K} Pr[A_k], \text{ for all } K \subseteq \{1, \ldots, 5\}.$$

(b) More generally, the events $\{A_j, j \in J\}$ are mutually independent if
Mutual Independence

Definition Mutual Independence

(a) The events A_1, \ldots, A_5 are mutually independent if

$$Pr[\cap_{k \in K} A_k] = \prod_{k \in K} Pr[A_k], \text{ for all } K \subseteq \{1, \ldots, 5\}.$$

(b) More generally, the events $\{A_j, j \in J\}$ are mutually independent if

$$Pr[\cap_{k \in K} A_k] = \prod_{k \in K} Pr[A_k], \text{ for all finite } K \subseteq J.$$
Definition Mutual Independence
(a) The events A_1, \ldots, A_5 are mutually independent if

$$Pr[\cap_{k \in K} A_k] = \prod_{k \in K} Pr[A_k], \text{ for all } K \subseteq \{1, \ldots, 5\}.$$

(b) More generally, the events $\{A_j, j \in J\}$ are mutually independent if

$$Pr[\cap_{k \in K} A_k] = \prod_{k \in K} Pr[A_k], \text{ for all finite } K \subseteq J.$$

Example: Flip a fair coin forever. Let $A_n = \text{‘coin } n \text{ is H’}$. Then the events A_n are mutually independent.
Mutual Independence

Theorem

(a) If the events \{A_j, j \in J\} are mutually independent and if \(K_1\) and \(K_2\) are disjoint finite subsets of \(J\), then \(\bigcap_{k \in K_1} A_k\) and \(\bigcap_{k \in K_2} A_k\) are independent.

(b) More generally, if the \(K_n\) are pairwise disjoint finite subsets of \(J\), then the events \(\bigcap_{k \in K_n} A_k\) are mutually independent.

(c) Also, the same is true if we replace some of the \(A_k\) by \(\bar{A}_k\).
Theorem

(a) If the events \(\{ A_j, j \in J \} \) are mutually independent and if \(K_1 \) and \(K_2 \) are disjoint finite subsets of \(J \), then
Theorem

(a) If the events \(\{ A_j, j \in J \} \) are mutually independent and if \(K_1 \) and \(K_2 \) are disjoint finite subsets of \(J \), then

\[\cap_{k \in K_1} A_k \text{ and } \cap_{k \in K_2} A_k \text{ are independent.} \]
Theorem

(a) If the events \(\{ A_j, j \in J \} \) are mutually independent and if \(K_1 \) and \(K_2 \) are disjoint finite subsets of \(J \), then

\[
\cap_{k \in K_1} A_k \text{ and } \cap_{k \in K_2} A_k \text{ are independent.}
\]

(b) More generally, if the \(K_n \) are pairwise disjoint finite subsets of \(J \), then the events

\[
\cap_{k \in K_n} A_k \text{ are mutually independent.}
\]
Mutual Independence

Theorem

(a) If the events \(\{A_j, j \in J\} \) are mutually independent and if \(K_1 \) and \(K_2 \) are disjoint finite subsets of \(J \), then

\[
\bigcap_{k \in K_1} A_k \text{ and } \bigcap_{k \in K_2} A_k \text{ are independent.}
\]

(b) More generally, if the \(K_n \) are pairwise disjoint finite subsets of \(J \), then the events

\[
\bigcap_{k \in K_n} A_k \text{ are mutually independent.}
\]

(c) Also, the same is true if we replace some of the \(A_k \) by \(\bar{A}_k \).
Balls in bins

One throws m balls into $n > m$ bins.
Balls in bins

One throws m balls into $n > m$ bins.
Balls in bins

One throws m balls into $n > m$ bins.
Balls in bins

One throws m balls into $n > m$ bins.

Theorem: $\Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\}$, for large enough n.

$Pr[\text{bin } k] = \frac{1}{n}$ for $k = 1, \ldots, n$
Balls in bins

One throws m balls into $n > m$ bins.

Theorem:

$$Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\}, \text{ for large enough } n.$$
The Calculation.

$A_i = \text{no collision when } i\text{th ball is placed in a bin.}$
The Calculation.

\[A_i = \text{no collision when } i \text{th ball is placed in a bin.} \]
\[Pr[A_1] = \]
The Calculation.

\[A_i = \text{no collision when } i\text{th ball is placed in a bin.} \]

\[Pr[A_1] = 1 \]
The Calculation.

\[A_i = \text{no collision when } i\text{th ball is placed in a bin.} \]

\[Pr[A_1] = 1 \]

\[Pr[A_2|A_1] = \]

\[Pr[A_1 \cap \cdots \cap A_m] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m}{n}\right). \]
The Calculation.

\[A_i = \text{no collision when } i\text{th ball is placed in a bin.} \]

\[Pr[A_1] = 1 \]

\[Pr[A_2|A_1] = 1 - \frac{1}{n} \]
The Calculation.

\(A_i = \) no collision when \(i \)th ball is placed in a bin.

\[Pr[A_1] = 1 \]

\[Pr[A_2|A_1] = 1 - \frac{1}{n} \]

\[Pr[A_3|A_1, A_2] = \]
The Calculation.

\(A_i = \) no collision when \(i \)th ball is placed in a bin.

\(Pr[A_1] = 1 \)

\(Pr[A_2|A_1] = 1 - \frac{1}{n} \)

\(Pr[A_3|A_1, A_2] = 1 - \frac{2}{n} \)
The Calculation.

\(A_i = \) no collision when \(i \)th ball is placed in a bin.

\[Pr[A_1] = 1 \]

\[Pr[A_2|A_1] = 1 - \frac{1}{n} \]

\[Pr[A_3|A_1, A_2] = 1 - \frac{2}{n} \]

\[Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = \]
The Calculation.

\(A_i = \) no collision when \(i \)th ball is placed in a bin.

\[
Pr[A_1] = 1
\]

\[
Pr[A_2|A_1] = 1 - \frac{1}{n}
\]

\[
Pr[A_3|A_1, A_2] = 1 - \frac{2}{n}
\]

\[
Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = (1 - \frac{i-1}{n}).
\]
The Calculation.

\(A_i = \) no collision when \(i \)th ball is placed in a bin.

\[
Pr[A_1] = 1
\]

\[
Pr[A_2|A_1] = 1 - \frac{1}{n}
\]

\[
Pr[A_3|A_1, A_2] = 1 - \frac{2}{n}
\]

\[
Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = (1 - \frac{i-1}{n}).
\]

no collision = \(A_1 \cap \cdots \cap A_m \).
The Calculation.

\(A_i = \text{no collision when } i\text{th ball is placed in a bin.}\)

\[Pr[A_1] = 1\]

\[Pr[A_2|A_1] = 1 - \frac{1}{n}\]

\[Pr[A_3|A_1, A_2] = 1 - \frac{2}{n}\]

\[Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = \left(1 - \frac{i-1}{n}\right)\]

no collision = \(A_1 \cap \cdots \cap A_m\).

Product rule:
The Calculation.

$A_i =$ no collision when ith ball is placed in a bin.

$Pr[A_1] = 1$

$Pr[A_2|A_1] = 1 - \frac{1}{n}$

$Pr[A_3|A_1, A_2] = 1 - \frac{2}{n}$

$Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = (1 - \frac{i-1}{n})$.

no collision $= A_1 \cap \cdots \cap A_m$.

Product rule:

$Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]$
The Calculation.

\[A_i = \text{no collision when } i\text{th ball is placed in a bin.} \]

\[Pr[A_1] = 1 \]

\[Pr[A_2|A_1] = 1 - \frac{1}{n} \]

\[Pr[A_3|A_1, A_2] = 1 - \frac{2}{n} \]

\[Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = (1 - \frac{i-1}{n}). \]

no collision = \(A_1 \cap \cdots \cap A_m \).

Product rule:

\[Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}] \]

\[\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right). \]
\[\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n} \right) \cdots \left(1 - \frac{m-1}{n} \right). \]
\[\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right). \]

Hence,

\[\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln\left(1 - \frac{k}{n}\right) \]

\[\approx \frac{1}{n} m \left(m - 1\right) \quad \text{(* *)} \]
\[\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right). \]

Hence,

\[
\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln \left(1 - \frac{k}{n}\right) \approx \sum_{k=1}^{m-1} \left(-\frac{k}{n}\right) \quad (*)
\]
⇒ $Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right)$.

Hence,

\[
\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} \left(-\frac{k}{n}\right) \quad (*)
\]

\[
= -\frac{1}{n} \frac{m(m-1)}{2} \quad (\dagger) \approx
\]
$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right)$.

Hence,

$$\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln\left(1 - \frac{k}{n}\right) \approx \sum_{k=1}^{m-1} \left(-\frac{k}{n}\right) \quad (\ast)$$

$$= -\frac{1}{n} \frac{m(m-1)}{2} \quad (\dagger) \approx -\frac{m^2}{2n}$$
⇒ \(Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right). \)

Hence,

\[
\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln\left(1 - \frac{k}{n}\right) \approx \sum_{k=1}^{m-1} \left(-\frac{k}{n}\right) (**)
\]

\[
= -\frac{1}{n} \frac{m(m-1)}{2} (\dagger) \approx -\frac{m^2}{2n}
\]

(**) We used \(\ln(1 - \varepsilon) \approx -\varepsilon \) for \(|\varepsilon| \ll 1. \)
\[\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right). \]

Hence,

\[
\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln\left(1 - \frac{k}{n}\right) \approx \sum_{k=1}^{m-1} \left(-\frac{k}{n}\right) \quad (*)
\]

\[= -\frac{1}{n} \frac{m(m-1)}{2} \approx -\frac{m^2}{2n} \quad (†)
\]

\((*)\) We used \(\ln(1 - \varepsilon) \approx -\varepsilon\) for \(|\varepsilon| \ll 1\).

\((†)\) \(1 + 2 + \cdots + m-1 = (m-1)m/2\).
Approximation

\[
\exp\{-x\} = 1 - x + \frac{1}{2!} x^2 + \cdots \approx 1 - x, \quad \text{for } |x| \ll 1.
\]

Hence, \(-x \approx \ln(1 - x)\) for \(|x| \ll 1\).
Balls in bins

Theorem:

\[Pr[\text{no collision}] \approx \exp\left\{ -\frac{m^2}{2n} \right\}, \text{ for large enough } n. \]
Balls in bins

Theorem:

\[Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\} \], for large enough \(n \).

E.g., with \(m = 6 \) one has

\[Pr[\text{collision}] > 1/2 \]
Theorem:
$$Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\}, \text{ for large enough } n.$$
Balls in bins

Theorem:

\[Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n. \]

In particular, \(Pr[\text{no collision}] \approx 1/2 \) for \(m^2/(2n) \approx \ln(2) \), i.e.,

\[m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}. \]
Theorem:

\[Pr[\text{no collision}] \approx \exp\left\{ -\frac{m^2}{2n} \right\}, \text{ for large enough } n. \]

In particular, \(Pr[\text{no collision}] \approx 1/2 \) for \(m^2/(2n) \approx \ln(2) \), i.e.,

\[m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}. \]

E.g., \(1.2\sqrt{20} \approx 5.4. \)
Balls in bins

Theorem:

\[Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\}, \text{ for large enough } n. \]

In particular, \(Pr[\text{no collision}] \approx 1/2 \) for \(m^2/(2n) \approx \ln(2) \), i.e.,

\[m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}. \]

E.g., \(1.2\sqrt{20} \approx 5.4 \).

Roughly, \(Pr[\text{collision}] \approx 1/2 \) for \(m = \sqrt{n} \).
Theorem:
\(Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\} \), for large enough \(n \).

In particular, \(Pr[\text{no collision}] \approx \frac{1}{2} \) for \(\frac{m^2}{(2n)} \approx \ln(2) \), i.e.,
\[
m \approx \sqrt{2 \ln(2)n} \approx 1.2 \sqrt{n}.
\]

E.g., \(1.2\sqrt{20} \approx 5.4 \).

Roughly, \(Pr[\text{collision}] \approx \frac{1}{2} \) for \(m = \sqrt{n} \). \(e^{-0.5} \approx 0.6 \).
The birthday paradox
Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?
Today’s your birthday, it’s my birthday too.

Probability that \(m \) people all have different birthdays? With \(n = 365 \), one finds
Probability that m people all have different birthdays? With $n = 365$, one finds

$$Pr[\text{collision}] \approx \frac{1}{2} \text{ if } m \approx 1.2\sqrt{365} \approx 23.$$
Probability that m people all have different birthdays?
With $n = 365$, one finds

$$Pr[\text{collision}] \approx 1/2 \text{ if } m \approx 1.2 \sqrt{365} \approx 23.$$

If $m = 60$, we find that
Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?
With $n = 365$, one finds

$$Pr[\text{collision}] \approx \frac{1}{2} \text{ if } m \approx 1.2\sqrt{365} \approx 23.$$

If $m = 60$, we find that

$$Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\} = \exp\left\{-\frac{60^2}{2 \times 365}\right\} \approx 0.007.$$
Today’s your birthday, it’s my birthday too..

Probability that \(m \) people all have different birthdays?
With \(n = 365 \), one finds

\[
Pr[\text{collision}] \approx 1/2 \text{ if } m \approx 1.2 \sqrt{365} \approx 23.
\]

If \(m = 60 \), we find that

\[
Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\} = \exp\left\{-\frac{60^2}{2 \times 365}\right\} \approx 0.007.
\]

If \(m = 366 \), then \(Pr[\text{no collision}] = \)
Today’s your birthday, it’s my birthday too.

Probability that \(m \) people all have different birthdays?
With \(n = 365 \), one finds

\[
Pr[\text{collision}] \approx \frac{1}{2} \text{ if } m \approx 1.2\sqrt{365} \approx 23.
\]

If \(m = 60 \), we find that

\[
Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\} = \exp\left\{-\frac{60^2}{2 \times 365}\right\} \approx 0.007.
\]

If \(m = 366 \), then \(Pr[\text{no collision}] = 0 \). (No approximation here!)
The birthday paradox

<table>
<thead>
<tr>
<th>n</th>
<th>$p(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0%</td>
</tr>
<tr>
<td>5</td>
<td>2.7%</td>
</tr>
<tr>
<td>10</td>
<td>11.7%</td>
</tr>
<tr>
<td>20</td>
<td>41.1%</td>
</tr>
<tr>
<td>23</td>
<td>50.7%</td>
</tr>
<tr>
<td>30</td>
<td>70.6%</td>
</tr>
<tr>
<td>40</td>
<td>89.1%</td>
</tr>
<tr>
<td>50</td>
<td>97.0%</td>
</tr>
<tr>
<td>60</td>
<td>99.4%</td>
</tr>
<tr>
<td>70</td>
<td>99.9%</td>
</tr>
<tr>
<td>100</td>
<td>99.9997%</td>
</tr>
<tr>
<td>200</td>
<td>99.99999999999999999999999999998%</td>
</tr>
<tr>
<td>300</td>
<td>$(100 - (6 \times 10^{-80}))%$</td>
</tr>
<tr>
<td>350</td>
<td>$(100 - (3 \times 10^{-129}))%$</td>
</tr>
<tr>
<td>365</td>
<td>$(100 - (1.45 \times 10^{-155}))%$</td>
</tr>
<tr>
<td>366</td>
<td>100%</td>
</tr>
<tr>
<td>367</td>
<td>100%</td>
</tr>
</tbody>
</table>
Checksums!

Consider a set of m files. Each file has a checksum of b bits. How large should b be for $\Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9.2$.

Proof: Let $n = 2^b$ be the number of checksums. We know $\Pr[\text{no collision}] \approx \exp\left(-\frac{m^2}{2n}\right) \approx 1 - \frac{m^2}{2n}$.

Hence, $\Pr[\text{no collision}] \approx 1 - 10^{-3} \iff \frac{m^2}{2n} \approx 10^{-3} \iff 2n \approx m^2 10^{-3} \iff 2^b + 1 \approx m^2 10^{-3} \iff b + 1 \approx 10 + 2\log_2(m) \approx 10 + 2 \cdot 1.44 \ln(m)$.

Note: $\log_2(x) = \log_2(e) \ln(x) \approx 1.44 \ln(x)$.
Checksums!

Consider a set of \(m \) files.

Claim: \(b \geq 2.9 \log_2 (m) + 9 \).

Proof: Let \(n = 2^b \) be the number of checksums. We know

\[
\Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\} \approx 1 - \frac{m^2}{2n}.
\]

Hence,

\[
\Pr[\text{no collision}] \approx 1 - 10^{-3} \iff \frac{m^2}{2n} \approx 10^{-3} \iff 2n \approx m^2 10^{-3} \iff 2^b + 1 \approx m^2 2^{10^{-3}} \approx m^2 2^{1.5} \approx 10 + 2 \log_2 (m).
\]

Note: \(\log_2 (x) = \log_2 (e) \ln (x) \approx 1.44 \ln (x) \).
Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?
Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.
Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:
Checksums!

Consider a set of m files. Each file has a checksum of b bits. How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums.
Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:
Let $n = 2^b$ be the number of checksums.
We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\}$
Checksums!

Consider a set of m files. Each file has a checksum of b bits. How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$.
Checksums!

Consider a set of m files. Each file has a checksum of b bits. How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

$$Pr[\text{no collision}] \approx 1 - 10^{-3}$$
Consider a set of m files. Each file has a checksum of b bits. How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

$$Pr[\text{no collision}] \approx 1 - 10^{-3} \iff m^2/(2n) \approx 10^{-3}$$
Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:
Let $n = 2^b$ be the number of checksums.
We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$.
Hence,

$$Pr[\text{no collision}] \approx 1 - 10^{-3} \iff m^2/(2n) \approx 10^{-3}$$
$$\iff 2n \approx m^2 10^3$$
Consider a set of \(m \) files.
Each file has a checksum of \(b \) bits.
How large should \(b \) be for \(Pr[\text{share a checksum}] \leq 10^{-3} \)?

Claim: \(b \geq 2.9 \ln(m) + 9 \).

Proof:

Let \(n = 2^b \) be the number of checksums.
We know \(Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n) \).
Hence,

\[
Pr[\text{no collision}] \approx 1 - 10^{-3} \iff m^2/(2n) \approx 10^{-3}
\]
\[
\iff 2n \approx m^2 10^3 \iff 2^{b+1} \approx m^2 2^{10}
\]
Consider a set of m files. Each file has a checksum of b bits. How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{ -m^2/(2n) \} \approx 1 - m^2/(2n)$. Hence,

$$Pr[\text{no collision}] \approx 1 - 10^{-3} \iff m^2/(2n) \approx 10^{-3}$$

$$\iff 2n \approx m^2 10^3 \iff 2^{b+1} \approx m^2 2^{10}$$

$$\iff b + 1 \approx 10 + 2 \log_2(m)$$
Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:
Let $n = 2^b$ be the number of checksums.
We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$.
Hence,

$$Pr[\text{no collision}] \approx 1 - 10^{-3} \iff m^2/(2n) \approx 10^{-3}$$
$$\iff 2n \approx m^2 10^3 \iff 2^{b+1} \approx m^2 2^{10}$$
$$\iff b + 1 \approx 10 + 2 \log_2(m) \approx 10 + 2.9 \ln(m).$$
Consider a set of m files. Each file has a checksum of b bits. How large should b be for $\Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $\Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

$$
\Pr[\text{no collision}] \approx 1 - 10^{-3} \iff m^2/(2n) \approx 10^{-3}
\iff 2n \approx m^210^3 \iff 2^{b+1} \approx m^22^{10}
\iff b + 1 \approx 10 + 2\log_2(m) \approx 10 + 2.9\ln(m).
$$

Note: $\log_2(x) = \log_2(e) \ln(x) \approx 1.44 \ln(x)$.

Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

Theorem:
(a) $\Pr[\text{miss one specific item}] \approx e^{-m/n}$
(b) $\Pr[\text{miss any one of the items}] \leq n e^{-m/n}$.
Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.
Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.
Coupon Collector Problem.

There are \(n \) different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem:
Coupon Collector Problem.

There are n different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,
Coupon Collector Problem.

There are n different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,

(a) $Pr[\text{miss one specific item}] \approx e^{- \frac{m}{n}}$
Coupon Collector Problem.

There are n different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,

(a) $Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}$

(b) $Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}.$
Coupon Collector Problem: Analysis.

Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}$
Coupon Collector Problem: Analysis.

Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}$

Fail the first time: $(1 - \frac{1}{n})$
Event A_m = ‘fail to get Brian Wilson in m cereal boxes’
Fail the first time: $(1 - \frac{1}{n})$
Fail the second time: $(1 - \frac{1}{n})$
Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}

Fail the first time: $(1 - \frac{1}{n})$

Fail the second time: $(1 - \frac{1}{n})$

And so on ...
Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}$

Fail the first time: $(1 - \frac{1}{n})$

Fail the second time: $(1 - \frac{1}{n})$

And so on ... for m times. Hence,
Event A_m = ‘fail to get Brian Wilson in m cereal boxes’

Fail the first time: $(1 - \frac{1}{n})$
Fail the second time: $(1 - \frac{1}{n})$
And so on ... for m times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \cdots \times (1 - \frac{1}{n})$$
Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}$

Fail the first time: $(1 - \frac{1}{n})$

Fail the second time: $(1 - \frac{1}{n})$

And so on ... for m times. Hence,

$$Pr[A_m] = \left(1 - \frac{1}{n}\right) \times \cdots \times \left(1 - \frac{1}{n}\right)$$

$$= (1 - \frac{1}{n})^m$$
Coupon Collector Problem: Analysis.

Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}$

Fail the first time: $(1 - \frac{1}{n})$

Fail the second time: $(1 - \frac{1}{n})$

And so on ... for m times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \cdots \times (1 - \frac{1}{n})$$

$$= (1 - \frac{1}{n})^m$$

$$\ln(Pr[A_m]) = m \ln(1 - \frac{1}{n}) \approx$$
Event $A_m = ‘\text{fail to get Brian Wilson in } m \text{ cereal boxes’}$

Fail the first time: $(1 - \frac{1}{n})$
Fail the second time: $(1 - \frac{1}{n})$
And so on ... for m times. Hence,

$$Pr[A_m] = \left(1 - \frac{1}{n}\right) \times \cdots \times \left(1 - \frac{1}{n}\right)$$

$$= (1 - \frac{1}{n})^m$$

$$ln(Pr[A_m]) = m ln\left(1 - \frac{1}{n}\right) \approx m \times \left(-\frac{1}{n}\right)$$
Coupon Collector Problem: Analysis.

Event $A_m = ‘\text{fail to get Brian Wilson in } m\text{ cereal boxes’}$

Fail the first time: $(1 - \frac{1}{n})$

Fail the second time: $(1 - \frac{1}{n})$

And so on ... for m times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \cdots \times (1 - \frac{1}{n})$$

$$= (1 - \frac{1}{n})^m$$

$$\ln(Pr[A_m]) = m \ln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$

$$Pr[A_m] \approx \exp\{-\frac{m}{n}\}.$$
Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}$

Fail the first time: $(1 - \frac{1}{n})$

Fail the second time: $(1 - \frac{1}{n})$

And so on ... for m times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \cdots \times (1 - \frac{1}{n})$$

$$= (1 - \frac{1}{n})^m$$

$$\ln(Pr[A_m]) = m \ln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$

$$Pr[A_m] \approx \exp\{-\frac{m}{n}\}.$$

For $p_m = \frac{1}{2}$, we need around $n \ln 2 \approx 0.69n$ boxes.
Collect all cards?

Experiment: Choose m cards at random with replacement.
Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: $E_k = \text{‘fail to get player } k\text{’}$, for $k = 1, \ldots, n$
Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: E_k = ‘fail to get player k’ , for $k = 1, \ldots, n$
Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: $E_k = \text{‘fail to get player } k\text{’}$, for $k = 1, \ldots, n$

Probability of failing to get at least one of these n players:

$$p := Pr[E_1 \cup E_2 \cdots \cup E_n]$$
Collect all cards?

Experiment: Choose \(m \) cards at random with replacement.

Events: \(E_k = \text{‘fail to get player } k\text{’} \), for \(k = 1, \ldots, n \)

Probability of failing to get at least one of these \(n \) players:

\[
p := Pr[E_1 \cup E_2 \cdots \cup E_n]
\]

How does one estimate \(p \)?
Collect all cards?

Experiment: Choose \(m \) cards at random with replacement.

Events: \(E_k = \text{‘fail to get player } k \text{’}, \) for \(k = 1, \ldots, n \)

Probability of failing to get at least one of these \(n \) players:

\[
p := Pr[E_1 \cup E_2 \cdots \cup E_n]
\]

How does one estimate \(p \)? **Union Bound:**

\[
p = Pr[E_1 \cup E_2 \cdots \cup E_n] \leq Pr[E_1] + Pr[E_2] \cdots Pr[E_n].
\]
Collect all cards?

Experiment: Choose \(m \) cards at random with replacement.
Events: \(E_k = \text{‘fail to get player } k \text{’} \), for \(k = 1, \ldots, n \)
Probability of failing to get at least one of these \(n \) players:

\[
p := \Pr[E_1 \cup E_2 \cdots \cup E_n]
\]

How does one estimate \(p \)? **Union Bound:**

\[
p = \Pr[E_1 \cup E_2 \cdots \cup E_n] \leq \Pr[E_1] + \Pr[E_2] \cdots \Pr[E_n].
\]

\[
\Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \ldots, n.
\]
Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: $E_k = \text{‘fail to get player } k\text{’}$, for $k = 1, \ldots, n$
Probability of failing to get at least one of these n players:

$$p := Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate p? Union Bound:

$$p = Pr[E_1 \cup E_2 \cdots \cup E_n] \leq Pr[E_1] + Pr[E_2] \cdots Pr[E_n].$$

$$Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \ldots, n.$$

Plug in and get

$$p \leq ne^{-\frac{m}{n}}.$$
Collect all cards?

Thus,

$$Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}.$$
Collect all cards?

Thus,

\[P_r[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}. \]

Hence,

\[P_r[\text{missing at least one card}] \leq p \text{ when } m \geq n \ln\left(\frac{n}{p}\right). \]
To collect all cards?

Thus,

$$Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}.$$

Hence,

$$Pr[\text{missing at least one card}] \leq p \text{ when } m \geq n\ln\left(\frac{n}{p}\right).$$

To get $p = 1/2$, set $m = n\ln(2n)$.
Thus,

\[Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}. \]

Hence,

\[Pr[\text{missing at least one card}] \leq p \text{ when } m \geq n\ln\left(\frac{n}{p}\right). \]

To get \(p = 1/2 \), set \(m = n\ln(2n) \).

E.g., \(n = 10^2 \Rightarrow m = 530; \)
Collect all cards?

Thus,

$$Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}.$$

Hence,

$$Pr[\text{missing at least one card}] \leq p \text{ when } m \geq n\ln\left(\frac{n}{p}\right).$$

To get $p = 1/2$, set $m = n\ln(2n)$.

E.g., $n = 10^2 \Rightarrow m = 530$; $n = 10^3 \Rightarrow m = 7600$.
Summary.

Bayes’ Rule, Mutual Independence, Collisions and Collecting
Summary.

Bayes’ Rule, Mutual Independence, Collisions and Collecting

Main results:

- **Bayes’ Rule**: \(\Pr[A_m|B] = \frac{p_m q_m}{(p_1 q_1 + \cdots + p_M q_M)} \).
Summary.

Bayes’ Rule, Mutual Independence, Collisions and Collecting

Main results:

- **Bayes’ Rule:** \(\Pr[A_m|B] = \frac{p_m q_m}{p_1 q_1 + \cdots + p_M q_M} \).
- **Product Rule:**
 \[
 \Pr[A_1 \cap \cdots \cap A_n] = \Pr[A_1] \Pr[A_2|A_1] \cdots \Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].
 \]
Main results:

- **Bayes’ Rule:** \(P_r[A_m|B] = p_m q_m / (p_1 q_1 + \cdots + p_M q_M) \).
- **Product Rule:**
 \[P_r[A_1 \cap \cdots \cap A_n] = P_r[A_1] P_r[A_2|A_1] \cdots P_r[A_n|A_1 \cap \cdots \cap A_{n-1}] \].
- **Balls in bins:** \(m \) balls into \(n > m \) bins.
Summary.

Bayes’ Rule, Mutual Independence, Collisions and Collecting

Main results:

- **Bayes’ Rule:** \(\Pr[A_m | B] = \frac{p_m q_m}{p_1 q_1 + \cdots + p_M q_M} \).
- **Product Rule:**
 \[\Pr[A_1 \cap \cdots \cap A_n] = \Pr[A_1] \Pr[A_2 | A_1] \cdots \Pr[A_n | A_1 \cap \cdots \cap A_{n-1}] \].
- **Balls in bins:** \(m \) balls into \(n > m \) bins.
 \[\Pr[\text{no collisions}] \approx \exp\left\{-\frac{m^2}{2n}\right\} \]
Summary.

Bayes’ Rule, Mutual Independence, Collisions and Collecting

Main results:

- **Bayes’ Rule:** \(Pr[A_m|B] = \frac{p_m q_m}{p_1 q_1 + \cdots + p_M q_M} \).
- **Product Rule:**
 \[Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}] \]
- **Balls in bins:** \(m \) balls into \(n > m \) bins.
 \[
 Pr[\text{no collisions}] \approx \exp\left\{ -\frac{m^2}{2n} \right\}
 \]
- **Coupon Collection:** \(n \) items. Buy \(m \) cereal boxes.
Bayes’ Rule, Mutual Independence, Collisions and Collecting

Main results:

► **Bayes’ Rule:** \(Pr[A_m | B] = p_m q_m / (p_1 q_1 + \cdots + p_M q_M) \).

► **Product Rule:**
\[
Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1] Pr[A_2 | A_1] \cdots Pr[A_n | A_1 \cap \cdots \cap A_{n-1}].
\]

► **Balls in bins:** \(m \) balls into \(n > m \) bins.
\[
Pr[\text{no collisions}] \approx \exp\{-\frac{m^2}{2n}\}
\]

► **Coupon Collection:** \(n \) items. Buy \(m \) cereal boxes.
\[
Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}};
\]
Main results:

- **Bayes’ Rule:** \(Pr[A_m|B] = p_m q_m / (p_1 q_1 + \cdots + p_M q_M) \).
- **Product Rule:**
 \[
 Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].
 \]
- **Balls in bins:** \(m \) balls into \(n > m \) bins.
 \[
 Pr[\text{no collisions}] \approx \exp\left\{-\frac{m^2}{2n}\right\}
 \]
- **Coupon Collection:** \(n \) items. Buy \(m \) cereal boxes.
 \[
 Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}; \quad Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}.
 \]
Summary.

Bayes’ Rule, Mutual Independence, Collisions and Collecting

Main results:

- **Bayes’ Rule:** $Pr[A_m | B] = p_m q_m / (p_1 q_1 + \cdots + p_M q_M)$.

- **Product Rule:**
 $$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1] Pr[A_2 | A_1] \cdots Pr[A_n | A_1 \cap \cdots \cap A_{n-1}]$$

- **Balls in bins:** m balls into $n > m$ bins.
 $$Pr[\text{no collisions}] \approx \exp\left\{ -\frac{m^2}{2n} \right\}$$

- **Coupon Collection:** n items. Buy m cereal boxes.
 $$Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}; \ Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}.$$
Summary.

Bayes’ Rule, Mutual Independence, Collisions and Collecting

Main results:

- **Bayes’ Rule:** $Pr[A_m|B] = \frac{p_m q_m}{(p_1 q_1 + \cdots + p_M q_M)}$.
- **Product Rule:**

 $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}]$.
- **Balls in bins:** m balls into $n > m$ bins.

 $$Pr[\text{no collisions}] \approx \exp\left\{-\frac{m^2}{2n}\right\}$$

- **Coupon Collection:** n items. Buy m cereal boxes.

 $$Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}; \ Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}.$$

Key Mathematical Fact: $\ln(1 - \varepsilon) \approx -\varepsilon$.