1. Counting and Probability Practice

1. A message source M of a digital communication system outputs a word of length 8 characters, with the characters drawn from the ternary alphabet \{0, 1, 2\}, and all such words are equally probable. What is the probability that M produces a word that looks like a byte (i.e., no appearance of ‘2’)?

2. If five numbers are selected at random from the set \{1, 2, 3, \ldots, 20\}, what is the probability that their minimum is larger than 5? (A number can be chosen more than once.)

3. If we put 5 math, 6 biology, 8 engineering, and 3 physics books on a bookshelf at random, what is the probability that all the math books are together?

2. Balls in Bins: Independent? You have k balls and n bins labelled 1, 2, \ldots, n, where $n \geq 2$. You drop each ball uniformly at random into the bins.

1. What is the probability that bin n is empty?

2. What is the probability that bin 1 is non-empty?

3. What is the probability that both bin 1 and bin n are empty?

4. What is the probability that bin 1 is non-empty and bin n is empty?

5. What is the probability that bin 1 is non-empty given that bin n is empty?

3. Communication network

In the communication network shown below, link failures are independent, and each link has a probability of failure of p. Consider the physical situation before you write anything. A can communicate with B as long as they are connected by at least one path which contains only in-service links.
1. Given that exactly five links have failed, determine the probability that \(A \) can still communicate with \(B \).

2. Given that exactly five links have failed, determine the probability that either \(g \) or \(h \) (but not both) is still operating properly.

3. Given that \(a, d \) and \(h \) have failed (but no information about the information of the other links), determine the probability that \(A \) can communicate with \(B \).