1. Logic

Decide whether each of the following is true or false and justify your answer:

a) \(\forall x (P(x) \wedge Q(x)) \equiv \forall x P(x) \wedge \forall x Q(x) \)

<table>
<thead>
<tr>
<th>(\forall x P(x))</th>
<th>(\forall x Q(x))</th>
<th>(\forall x P(x) \wedge \forall x Q(x))</th>
<th>(\forall x (P(x) \wedge Q(x)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

False. If \(P(1) \) is true, \(Q(1) \) is false, \(P(2) \) is false and \(Q(2) \) is true, the left-hand side will be true, but the right-hand side will be false.

b) \(\forall x (P(x) \lor Q(x)) \equiv \forall x P(x) \lor \forall x Q(x) \)

2. (Proof)

A perfect square is an integer \(n \) of the form \(n = m^2 \) for some integer \(m \). Prove that every odd perfect square is of the form \(8k + 1 \) for some integer \(k \).

Let \(n = m^2 \) for some integer \(m \). Since \(n \) is odd, \(m \) is also odd, i.e., of the form \(m = 2l + 1 \) for some integer \(l \). Then, \(m^2 = 4l^2 + 4l + 1 = 4(l + 1) + 1 \). Since one of \(l \) and \(l + 1 \) must be even, \(l(l + 1) \) is of the form \(2k \) and \(n = m^2 = 8k + 1 \).

3. Contradiction

Prove that \(2^{1/n} \) is not rational for any integer \(n > 3 \). [Hint : Fermat’s Last Theorem and the method of contradiction]

If not, then there exists an integer \(n > 3 \) such that \(2^{1/n} = \frac{p}{q} \) where \(p, q \) are positive integers. Thus, \(2q^n = p^n \), and this implies,

\[q^n + q^n = p^n \]

which is a contradiction to the Fermat’s Last Theorem.

4. Problem solving

Prove that if you put \(n + 1 \) apples into \(n \) boxes, any way you like, then at least one box must contain at least 2 apples. This is known as the pigeonhole principle.

Suppose this is not the case. Then all the boxes would contain at most 1 apple. Then the maximum number of apples we could have would be \(n \), but this is a contradiction since we have \(n + 1 \) apples.

5. Numbers of Friends

Prove that if there are \(n \geq 2 \) people at a party, then at least 2 of them have the same number of friends at the party. Answer: Suppose the contrary that everyone has a different number of friends at the party.
Since the number of friends that each person can have ranges from 0 to $n - 1$, we conclude that for every $i \in \{0, 1, \ldots, n - 1\}$, there is exactly one person who has exactly i friends at the party. In particular, there is one person who has $n - 1$ friends (i.e., friends with everyone), and there is one person who has 0 friends (i.e., friends with no one), which is a contradiction.