

Finding an inverse?

We showed how to efficiently tell if there is an inverse.
Extend euclid to find inverse.

Euclid's GCD algorithm.

```
define (euclid x y)
    (if (= y 0)
        (euclid y (mod x y))))
```

Computes the $\operatorname{gcd}(x, y)$ in $O(n)$ divisions.
For x and m, if $\operatorname{gcd}(x, m)=1$ then x has an inverse modulo m

Make d out of x and $y . . ?$

$$
\begin{array}{lll}
\operatorname{gcd}(35,12) & \\
\operatorname{gcd}(12,11) & ; & \operatorname{gcd}(12,35 \% 12) \\
\operatorname{gcd}(11,1) & ; ; & \operatorname{gcd}(11,12 \% 11) \\
\operatorname{gcd}(1,0) & & \\
1
\end{array}
$$

How did gcd get 11 from 35 and 12?
$35-\left\lfloor\frac{35}{12}\right\rfloor 12=35-(2) 12=11$
How does gcd get 1 from 12 and 11 ?
$12-\left\lfloor\frac{12}{17}\right\rfloor 11=12-(1) 11=1$
Algorithm finally returns 1.
But we want 1 from sum of multiples of 35 and 12 ?
Get 1 from 12 and 11.
$1=12-(1) 11=12-(1)(35-(2) 12)=(3) 12+(-1) 35$ Get 11 from 35 and 12 and plugin.... Simplify. $a=3$ and $b=-1$.

Extended GCD Algorithm.

$$
\begin{aligned}
& \text { ext-gcd }(x, y) \\
& \text { if } y=0 \text { then return }(x, 1,0) \\
& \text { else } \\
& \quad(d, a, b):=\operatorname{ext}-\operatorname{gcd}(y, \bmod (x, y)) \\
& \quad \text { return }(d, b, a-\operatorname{floor}(x / y) * b
\end{aligned}
$$

Claim: Returns $(d, a, b): d=\operatorname{gcd}(a, b)$ and $d=a x+b y$

$$
\begin{aligned}
& \text { ext-gcd }(35,12) \\
& \text { ext-gcd }(12,11) \\
& \text { ext-gcd }(11,1) \\
& \text { return }(1,1,0) ; ; 1=(1) 1+(0) 0 \\
& \text { return }(1,0,1) \quad ; \quad 1=(0) 11+(1) 1 \\
& \text { return }(1,1,-1) \quad ; ; 1=(1) 12+(-1) 11 \\
& \text { return }(1,-1,3) \quad ; \quad 1=(-1) 35+(3) 12
\end{aligned}
$$

Review Proof: step.

$$
\begin{aligned}
& \operatorname{ext-gcd}(x, y) \\
& \text { if } y=0 \text { then return }(x, 1,0) \\
& \text { else } \\
& \quad(d, a, b):=\operatorname{ext}-\operatorname{gcd}(y, \bmod (x, y)) \\
& \quad \text { return }(d, b, a-\operatorname{floor}(x / y) \text { * b) }
\end{aligned}
$$

Recursively: $d=a y+b\left(x-\left\lfloor\frac{x}{y}\right\rfloor \cdot y\right) \Longrightarrow d=b x-\left(a-\left\lfloor\frac{x}{y}\right\rfloor b\right) y$
Returns $\left(d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)\right)$.

Extended GCD Algorithm.

ext-gcd (x,y)
if $y=0$ then return $(x, 1,0)$
else
(d, a, b) := ext-gcd (y, mod (x,y))

Theorem: Returns (d, a, b), where $d=\operatorname{gcd}(a, b)$ and

$$
d=a x+b y
$$

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time Very different from elementary school: try 1, try 2, try $3 .$. $2^{n / 2}$
Inverse of $500,000,357$ modulo $1,000,000,000,000$? ≤ 80 divisions.
versus 1,000,000
Internet Security.
Public Key Cryptography: 512 digits
512 divisions vs.
(1000) ${ }^{5}$ divisions.

Internet Security: Next Week!

Correctness.

Proof: Strong Induction. ${ }^{1}$
Base: ext-gcd $(x, 0)$ returns $(d=x, 1,0)$ with $x=(1) x+(0) y$.
Induction Step: Returns (d, A, B) with $d=A x+B y$
Ind hyp: ext-gcd $(y, \bmod (x, y))$ returns (d, a, b) with $d=a y+b(\bmod (x, y))$
ext-gcd (x, y) calls $\operatorname{ext}-\operatorname{gcd}(y, \bmod (x, y))$ so

$$
\begin{aligned}
d & =a y+b \cdot(\bmod (x, y)) \\
& =a y+b \cdot\left(x-\left\lfloor\frac{x}{y}\right\rfloor y\right) \\
& =b x+\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right) y
\end{aligned}
$$

And ext-gcd returns $\left(d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)\right)$ so theorem holds!

Assume d is $\operatorname{gcd}(x, y)$ by previous proof.

Bijections

Bijection is one to one and onto

Bijection:
$f: A \rightarrow B$.
Domain: $A, C o-D o m a i n: B$.
Versus Range.
.g. $\sin (x)$.
$A=B=$ reals.
Range is [$[-1,1]$. Onto: $[-1,1]$.
Not one-to-one. $\boldsymbol{\operatorname { s i n }}(\pi)=\boldsymbol{\operatorname { s i n }}(0)=0$.
Range Definition always is onto.
Consider $f(x)=a x \bmod m$.
$f:\{0, \ldots, m-1\} \rightarrow\{0, \ldots, m-1\}$.
Domain/Co-Domain: $\{0, \ldots, m-1\}$
When is it a bijection?
When $\operatorname{gcd}(a, m)$ is? ... 1 .
Not Example: $a=2, m=4, f(0)=f(2)=0(\bmod 4)$.

Lots of Mods

$x=5(\bmod 7)$ and $x=3(\bmod 5)$.
What is $x(\bmod 35)$?
Let's try 5. Not $3(\bmod 5)$!
Let's try 3 . Not $5(\bmod 7)$!
If $x=6(\bmod 7)$
then x is in $\{5,12,19,26,33\}$
Oh, only 33 is $3(\bmod 5)$.
Hmmm... only one solution.
A bit slow for large values.

First there was logic..

A statement is a true or false.

Statements?
$3=4-1$? Statement
$3=5$? Statement
3 ? Not a statement!
$n=3$? Not a statement but a predicate
Predicate: Statement with free variable(s).
Example: $x=3$
Given a value for x, becomes a statement
Predicate?
$n>3$? Predicate: $P(n)$!
$x=y$? Predicate: $P(x, y)$
$x+y$? No. An expression, not a statement.
Quantifiers:
$(\forall x) P(x)$. For every $x, P(x)$ is true $(\exists x) P(x)$. There exists an x, where $P(x)$ is true.
$(\forall n \in N), n^{2}>n$.
$(\forall x \in R)(\exists y \in R) y>x$.

Simple Chinese Remainder Theorem.

Find $x=a(\bmod m)$ and $x=b(\bmod n)$ where $\operatorname{gcd}(m, n)=1$
CRT Thm: Unique solution $(\bmod m n)$
Proof
Consider $u=n\left(n^{-1}(\bmod m)\right)$.
$u=0(\bmod n) \quad u=1(\bmod m)$
Consider $v=m\left(m^{-1}(\bmod n)\right)$.
$v=1(\bmod n) \quad v=0(\bmod m)$
Let $x=a u+b v$.
$x=a(\bmod m)$ since $b v=0(\bmod m)$ and $a u=a(\bmod m)$
$x=b(\bmod n)$ since $a u=0(\bmod n)$ and $b v=b(\bmod n)$
Only solution? If not, two solutions, x and y
$(x-y) \equiv 0(\bmod m)$ and $(x-y) \equiv 0(\bmod n)$.
$\Longrightarrow(x-y)$ is multiple of m and n since $\operatorname{gcd}(m, n)=1$.
$\Longrightarrow x-y>m n \Longrightarrow x, y \notin\{0, \ldots, m n-1\}$
Thus, only one solution modulo $m n$.

Connecting Statements

$A \wedge B, A \vee B, \neg A$.
You got this!
Propositional Expressions and Logical Equivalence

$$
(A \Longrightarrow B) \equiv(\neg A \vee B)
$$

$$
\begin{gathered}
(A \Longrightarrow B) \equiv(\neg A \vee B) \\
\neg(A \vee B) \equiv(\neg A \wedge \neg \neg)
\end{gathered}
$$

Proofs: truth table or manipulation of known formulas.
$(\forall x)(P(x) \wedge Q(x)) \equiv(\forall x) P(x) \wedge(\forall x) Q(x)$

Midterm Review

Now...
.and then proofs..
Direct: $P \Longrightarrow Q$
Example: a is even $\Longrightarrow a^{2}$ is even.
Approach: What is even? $a=2 k$
$a^{2}=4 k^{2}$
What is even?
$a^{2}=2\left(2 k^{2}\right)$
integers closed under multiplication
a^{2} is even.
Contrapositive: $P \Longrightarrow Q$ or $\neg Q \Longrightarrow \neg P$ Example: a^{2} is odd $\Longrightarrow a$ is odd
Example: a^{2} is odd $\Longrightarrow a$ is odd.

Contradiction: P

$\neg P \Longrightarrow$ false
$\neg P \Longrightarrow R \wedge \neg R$
Useful for prove something does not exist
Example: rational representation of $\sqrt{2}$ does not exist.
Example: finite set of primes does not exist
Example: rogue couple does not exist

...jumping forward..

Contradiction in induction:
contradict place where induction step doesn't hold.
Well Ordering Principle.
Stable Marriage:
first day where women does not improve.
first day where any man rejected by optimal women.
Do not exist

..and then induction...

$P(0) \wedge((\forall n)(P(n) \Longrightarrow P(n+1) \equiv(\forall n \in N) P(n)$.
Thm: For all $n \geq 1,8 \mid 3^{2 n}-1$
Induction on n.
Base: $8 \mid 3^{2}-1$.
Induction Hypothesis: Assume $P(n)$: True for some n.
$\left(3^{2 n}-1=8 d\right)$
Induction Step: Prove $P(n+1)$
$3^{2 n+2}-1=9\left(3^{2 n}\right)-1$ (by induction hypothesis) $=9(8 d+1)-1$
$=72 d+8$
$=8(9 d+1$
Divisible by 8 .

Optimality/Pessima

Optimal partner if best partner in any stable pairing
Not necessarily first in list
Possibly no stable pairing with that partner.
Man-optimal pairing is pairing where every man gets optimal partner
Thm: TMA produces male optimal pairing, S
First man M to lose optimal partner.
Better partner W for M.
Different stable pairing T.
TMA: M asked W first!
There is M^{\prime} who bumps M in TMA.
W prefers M^{\prime}.
M^{\prime} likes W at least as much as optimal partner
Not first bump.
M^{\prime} and W is rogue couple in T.
Thm: woman pessimal
Man optimal \Longrightarrow Woman pessimal
Woman optimal \Longrightarrow Man pessimal

Stable Marriage: a study in definitions and WOP

n-men, n-women

Each person has completely ordered preference list contains every person of opposite gender.
Pairing.
Set of pairs (m_{i}, w_{j}) containing all people exactly once.
How many pairs? n.
People in pair are partners in pairing.

Rogue Couple in a pairing

A m_{j} and w_{k} who like each other more than their partners

Stable Pairing

Pairing with no rogue couples.
Does stable pairing exist?
No, for roommates problem.

..Graphs...

$G=(V, E)$
V - set of vertices
$E \subseteq V \times V$ - set of edges.
Directed: ordered pair of vertices.
Adjacent, Incident, Degree In-degree, Out-degree.

Thm: Sum of degrees is $2|E|$.
Edge is incident to 2 vertices.
Degree of vertices is total incidences.
Pair of Vertices are Connected:
If there is a path between them.
Connected Component: maximal set of connected vertices
Connected Graph: one connected component.

Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.
Algorithm:
Take a walk using each edge at most once
Property: return to starting point
Proof Idea: Even degree.
Recurse on connected components
Put together.
Property: walk visits every component.
Proof Idea: Original graph connected.

Six color theorem.

Theorem: Every planar graph can be colored with six colors
Proof:
Recall: $e \leq 3 v-6$ for any planar graph where $v>2$.
From Euler's Formula.
Total degree: $2 e$
Average degree: $\leq \frac{2 e}{v} \leq \frac{2(3 v-6)}{v} \leq 6-\frac{12}{v}$.
There exists a vertex with degree <6 or at most 5 .
Remove vertex v of degree at most 5 .
Inductively color remaining graph
Color is available for v since only five neighbors...
and only five colors are used.

Graph Coloring.

Given $G=(V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors Fewer colors than number of vertices.
Fewer colors than max degree node.
Interesting things to do. Algorithm

Five color theorem: summary.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.
Theorem: Every planar graph can be colored with five colors.
Proof: Again with the degree 5 vertex. Again recurse.

Either switch green. Or try switching orange One will work.

Planar graphs and maps

Planar graph coloring \equiv map coloring .

Four color theorem is about planar graphs

Four Color Theorem

Theorem: Any planar graph can be colored with four colors. Proof: Not Today!

Graph Types: Complete Graph.

$K_{n},|V|=n$
every edge present
degree of vertex? $|V|-1$
Very connected.
Lots of edges: $n(n-1) / 2$.

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.
An n-dimensional hypercube consists of a 0 -subcube (1 -subcube) which is a $n-1$-dimensional hypercube with nodes labelled $0 x(1 x)$ with the additional edges ($0 x, 1 x$).

Trees.

Definitions:
A connected graph without a cycle.
A connected graph with $|V|-1$ edges.
A connected graph where any edge removal disconnects it.
An acyclic graph where any edge addition creates a cycle.
To tree or not to tree!

Minimally connected, minimum number of edges to connect
Property:
Can remove a single node and break into components of size at most $|V| / 2$.

Hypercube:properties

Rudrata Cycle: cycle that visits every node
Eulerian? If n is even
Large Cuts: Cutting off k nodes needs $\geq k$ edges.
Best cut? Cut apart subcubes: cuts off 2^{n} nodes with 2^{n-1} edges.
FYI: Also cuts represent boolean functions.
Nice Paths between nodes.
Get from 000100 to 101000
$000100 \rightarrow 100100 \rightarrow 101100 \rightarrow 101000$
Correct bits in string, moves along path in hypercube
Good communication network!

Hypercube

Hypercubes. Really connected. $|V| \log |V|$ edges!
Also represents bit-strings nicely
$G=(V, E)$
V
$=$
$|V|=\{0,1\}^{n}$,
$|E|=\{(x, y) \mid x$ and y differ in one bit position. $\}$
$0 \quad 1$

..Modular Arithmetic..

Arithmetic modulo m.

Elements of equivalence classes of integers.
$\{0, \ldots, m-1\}$
and integer $i \equiv a(\bmod m)$
if $i=a+k m$ for integer k.
or if the remainder of i divided by m is a.
Can do calculations by taking remainders
at the beginning,
in the middle
or at the end.
$58+32=90=6(\bmod 7)$
$58+32=2+4=6(\bmod 7)$
$58+32=2+-3=-1=6(\bmod 7)$
Negative numbers work the way you are used to.
$-3=0-3=7-3=4(\bmod 7)$
Additive inverses are intuitively negative numbers.

Modular Arithmetic and multiplicative inverses.
$3^{-1}(\bmod 7) ? 5$
$5^{-1}(\bmod 7)$? 3
Inverse Unique? Yes.
Proof: a and b inverses of $x(\bmod n)$
$a x=b x=1(\bmod n)$
$a \times b=b \times b=b(\bmod n)$
$a=b(\bmod n)$.
$3^{-1}(\bmod 6)$? No, no, no....
$\{3(1), 3(2), 3(3), 3(4), 3(5)\}$
$\{3,6,3,6,3\}$
See,... no inverse!

Midterm format

Time: 120 minutes.
Some short answers
Get at ideas that you learned
Know material well:
Know material medium: fast, correct.
Know material medium: slower, less correct.
Know material not so well: Uh oh
Some longer questions.
Proofs, algorithms, properties. Not so much calculation.
See piazza for more resources.
E.g., TA videos for past exams.

Modular Arithmetic Inverses and GCD
x has inverse modulo m if and only if $\operatorname{gcd}(x, m)=1$.
Group structures more generally.
Proof Idea:
$\{0 x, \ldots,(m-1) x\}$ are distinct modulo m if and only if $\operatorname{gcd}(x, m)=1$
Finding gcd.
$\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x-y)=\operatorname{gcd}(y, x(\bmod y))$.
Give recursive Algorithm! Base Case? $\operatorname{gcd}(x, 0)=x$.
Extended-gcd (x, y) returns (d, a, b)
$d=\operatorname{gcd}(x, y)$ and $d=a x+b y$
Multiplicative inverse of (x, m).
$\operatorname{egcd}(x, m)=(1, a, b)$
a is inverse! $1=a x+b m=a x(\bmod m)$.
Idea: egcd.
gcd produces 1
by adding and subtracting multiples of x and y

Wrapup.

Other issues...
admin@eecs 70. org
Private message on piazza.
Good (sort of last minute)
Studying!!!!!!!!!!!!!!!!!

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$.
$\operatorname{egcd}(7,60)$.

$$
\begin{aligned}
7(0)+60(1) & =60 \\
7(1)+60(0) & =7 \\
7(-8)+60(1) & =4 \\
7(9)+60(-1) & =3 \\
7(-17)+60(2) & =1
\end{aligned}
$$

Confirm: $-119+120=1$
$d=e^{-1}=-17=43=(\bmod 60)$

