Today	Finding an inverse?	Euclid's GCD algorithm.
Finish Euclid. Bijection/CRT/Isomorphism. Review for Midterm.	We showed how to efficiently tell if there is an inverse. Extend euclid to find inverse.	<pre>(define (euclid x y) (if (= y 0)</pre>
Multiplicative Inverse.	1/42 Extended GCD	Make <i>d</i> out of <i>x</i> and <i>y</i> ?
GCD algorithm used to tell if there is a multiplicative inverse. How do we find a multiplicative inverse?	Euclid's Extended GCD Theorem: For any <i>x</i> , <i>y</i> there are integers <i>a</i> , <i>b</i> such that ax + by = d where $d = gcd(x, y)$. "Make <i>d</i> out of sum of multiples of <i>x</i> and <i>y</i> ." What is multiplicative inverse of <i>x</i> modulo <i>m</i> ? By extended GCD theorem, when $gcd(x, m) = 1$. ax + bm = 1 $ax \equiv 1 - bm \equiv 1 \pmod{m}$. So a multiplicative inverse of <i>x</i> (mod <i>m</i>)!! Example: For $x = 12$ and $y = 35$, $gcd(12, 35) = 1$. (3) $12 + (-1)35 = 1$. a = 3 and $b = -1$. The multiplicative inverse of 12 (mod 35) is 3.	gcd (35, 12) $gcd (12, 11) ;; gcd (12, 35%12)$ $gcd (11, 1) ;; gcd (11, 12%11)$ $gcd (1, 0)$ 1 How did gcd get 11 from 35 and 12? $35 - \lfloor \frac{35}{12} \rfloor 12 = 35 - (2)12 = 11$ How does gcd get 1 from 12 and 11? $12 - \lfloor \frac{12}{11} \rfloor 11 = 12 - (1)11 = 1$ Algorithm finally returns 1. But we want 1 from sum of multiples of 35 and 12? Get 1 from 12 and 11. 1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35 Get 11 from 35 and 12 and plugin Simplify. $a = 3$ and $b = -1$.

Extended GCD Algorithm.

ext-gcd(x,y)
 if y = 0 then return(x, 1, 0)
 else
 (d, a, b) := ext-gcd(y, mod(x,y))
 return (d, b, a - floor(x/y) * b)

Claim: Returns (d, a, b): d = gcd(a, b) and d = ax + by. Example: $a - \lfloor x/y \rfloor \cdot b = 0$

ext-gcd(35,12)
ext-gcd(12, 11)
ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0
return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11
return (1,-1, 3) ;; 1 = (-1)35 + (3)12

Review Proof: step.

ext-gcd(x,y)
 if y = 0 then return(x, 1, 0)
 else
 (d, a, b) := ext-gcd(y, mod(x,y))
 return (d, b, a - floor(x/y) * b)

Recursively: $d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx - (a - \lfloor \frac{x}{y} \rfloor b)y$ Returns $(d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))$.

Extended GCD Algorithm.

ext-gcd(x,y)
 if y = 0 then return(x, 1, 0)
 else
 (d, a, b) := ext-gcd(y, mod(x,y))
 return (d, b, a - floor(x/y) * b)

Theorem: Returns (d, a, b), where d = gcd(a, b) and

d = ax + by.

Wrap-up

Correctness.

Proof: Strong Induction.¹ **Base:** ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y. **Induction Step:** Returns (d, A, B) with d = Ax + ByInd hyp: **ext-gcd**(y, mod(x, y)) returns (d, a, b) with $d = ay + b(\mod(x, y))$ ext-gcd(x,y) calls ext-gcd(y, mod(x,y)) so $d = ay + b \cdot (mod(x, y))$ $= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)$ $= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y$ And ext-gcd returns $(d, b, (a - \lfloor \frac{x}{v} \rfloor \cdot b))$ so theorem holds! ¹Assume *d* is gcd(x, y) by previous proof. **Bijections** Bijection is one to one and onto. Bijection: $f: A \rightarrow B$. Domain: A, Co-Domain: B. Versus Range. E.g. **sin** (x). A = B = reals. Range is [-1,1]. Onto: [-1,1]. Not one-to-one. **sin** $(\pi) =$ **sin** (0) = 0. Range Definition always is onto. Consider $f(x) = ax \mod m$. $f: \{0, \ldots, m-1\} \to \{0, \ldots, m-1\}.$ Domain/Co-Domain: $\{0, \ldots, m-1\}$. When is it a bijection? When *gcd*(*a*, *m*) is? ... 1.

Not Example: $a = 2, m = 4, f(0) = f(2) = 0 \pmod{4}$.

Lots of Mods	Simple Chinese Remainder Theorem.	Midterm Review
$x = 5 \pmod{7}$ and $x = 3 \pmod{5}$. What is $x \pmod{35}$? Let's try 5. Not 3 (mod 5)! Let's try 3. Not 5 (mod 7)! If $x = 6 \pmod{7}$ then x is in {5,12,19,26,33}. Oh, only 33 is 3 (mod 5). Hmmm only one solution. A bit slow for large values.	Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where $gcd(m, n)=1$. CRT Thm: Unique solution \pmod{mn} . Proof: Consider $u = n(n^{-1} \pmod{m})$. $u = 0 \pmod{n}$ $u = 1 \pmod{m}$ Consider $v = m(m^{-1} \pmod{n})$. $v = 1 \pmod{n}$ $v = 0 \pmod{m}$ Let $x = au + bv$. $x = a \pmod{m}$ since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$ $x = b \pmod{m}$ since $au = 0 \pmod{m}$ and $bv = b \pmod{n}$ Only solution? If not, two solutions, x and y . $(x - y) \equiv 0 \pmod{m}$ and $(x - y) \equiv 0 \pmod{n}$. $\Rightarrow (x - y) \equiv \min{k} y \notin \{0,, mn - 1\}$. Thus, only one solution modulo mn .	Now
First there was logic A statement is a true or false. Statements? 3 = 4 - 1? Statement! 3 = 5? Statement! 3 = 5? Statement! n = 3? Not a statementbut a predicate. Predicate: Statement with free variable(s). Example: $x = 3$ Given a value for x , becomes a statement. Predicate? n > 3? Predicate: $P(n)!x = y$? Predicate: $P(n)!x = y$? Predicate: $P(n)!x + y$? No. An expression, not a statement. Cuantifiers: $(\forall x) P(x)$. For every x , $P(x)$ is true. $(\exists x) P(x)$. There exists an x , where $P(x)$ is true. $(\forall x \in R), n^2 \ge n$. $(\forall x \in R)(\exists y \in R)y > x$.	13/42 Connecting Statements $A \land B, A \lor B, \neg A.$ You got this! Propositional Expressions and Logical Equivalence $(A \implies B) \equiv (\neg A \lor B)$ $\neg (A \lor B) \equiv (\neg A \land B)$ Proofs: truth table or manipulation of known formulas. $(\forall x)(P(x) \land Q(x)) \equiv (\forall x)P(x) \land (\forall x)Q(x)$	$\begin{array}{c} \text{and then proofs}\\ \text{Direct: } P \implies Q\\ \text{Example: a is even } \Rightarrow a^2 \text{ is even.}\\ \text{Approach: What is even? } a = 2k\\ a^2 = 4k^2.\\ \text{What is even?}\\ a^2 = 2(2k^2)\\ \text{Integers closed under multiplication!}\\ a^2 \text{ is even.}\\ \text{Contrapositive: } P \implies Q \text{ or } \neg Q \implies \neg P.\\ \text{Example: } a^2 \text{ is odd } \implies a \text{ is odd.}\\ \text{Contrapositive: } a \text{ is even } \implies a^2 \text{ is even.}\\ \end{array}$

...jumping forward..

Contradiction in induction: contradict place where induction step doesn't hold. Well Ordering Principle. Stable Marriage: first day where women does not improve. first day where any man rejected by optimal women.

Do not exist.

TMA.

Traditional Marriage Algorithm:

Each Day:

All men propose to favorite woman who has not yet rejected him.

Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions: Man **crosses off** woman who rejected him. Woman's current proposer is "**on string**."

"Propose and Reject." : Either men propose or women. But not both. Traditional propose and reject where men propose.

Key Property: Improvement Lemma: Every day, if man on string for woman, ⇒ any future man on string is better.

Stability: No rogue couple. rogue couple (M,W) \implies M proposed to W \implies W ended up with someone she liked better than M. Not roque couple!

...and then induction...

$$\begin{split} P(0) \wedge ((\forall n)(P(n) \implies P(n+1) \equiv (\forall n \in N) \ P(n). \\ \textbf{Thm: For all } n \geq 1, 8|3^{2n} - 1. \\ \text{Induction on } n. \\ \text{Base: } 8|3^2 - 1. \\ \text{Induction Hypothesis: Assume } P(n): \text{ True for some } n. \\ (3^{2n} - 1 = 8d) \\ \text{Induction Step: Prove } P(n+1) \\ 3^{2n+2} - 1 = 9(3^{2n}) - 1 \quad (by \text{ induction hypothesis}) \\ &= 9(8d+1) - 1 \\ &= 72d+8 \\ &= 8(9d+1) \end{split}$$

Divisible by 8.

Optimality/Pessimal

Optimal partner if best partner in any stable pairing. Not necessarily first in list. Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, *S*. First man *M* to lose optimal partner.

Better partner *W* for *M*.

better partner W for M. Different stable pairing T. TMA: M asked W first! There is M' who bumps M in TMA. W prefers M'. M' likes W at least as much as optimal partner. Not first bump. M' and W is rogue couple in T.

Thm: woman pessimal.

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing. Set of pairs (m_i, w_j) containing all people *exactly* once. How many pairs? *n*. People in pair are **partners** in pairing.

Rogue Couple in a pairing. A m_j and w_k who like each other more than their partners

Stable Pairing. Pairing with no rogue couples.

Does stable pairing exist?

No, for roommates problem.

...Graphs...

 $\begin{aligned} G &= (V, E) \\ V \text{ - set of vertices.} \\ E &\subseteq V \times V \text{ - set of edges.} \end{aligned}$

Directed: ordered pair of vertices.

Adjacent, Incident, Degree. In-degree, Out-degree.

Thm: Sum of degrees is 2|E|. Edge is incident to 2 vertices. Degree of vertices is total incidences.

Pair of Vertices are Connected: If there is a path between them.

Connected Component: maximal set of connected vertices.

Connected Graph: one connected component.

Nice Paths between nodes. Get from 000100 to 101000. 000100 \rightarrow 100100 \rightarrow 101100 \rightarrow 101000 Correct bits in string, moves along path in hypercube!

Good communication network!

 $58+32=2+3=-1=6 \pmod{7}$

Negative numbers work the way you are used to. $-3=0-3=7-3=4 \pmod{7}$

Additive inverses are intuitively negative numbers.

Modular Arithmetic and multiplicative inverses.

 $\begin{array}{l} \{3(1),3(2),3(3),3(4),3(5)\} \\ \{3,6,3,6,3\} \\ \\ \text{See,... no inverse!} \end{array}$

Midterm format

Time: 120 minutes.

Some short answers. Get at ideas that you learned. Know material well: fast, correct. Know material medium: slower, less correct. Know material not so well: Uh oh.

Some longer questions. Proofs, algorithms, properties. Not so much calculation.

See piazza for more resources. E.g., TA videos for past exams.

Modular Arithmetic Inverses and GCD x has inverse modulo m if and only if gcd(x,m) = 1. Group structures more generally. Proof Idea: $\{0x, \dots, (m-1)x\}$ are distinct modulo *m* if and only if gcd(x, m) = 1. Finding gcd. $gcd(x,y) = gcd(y,x-y) = gcd(y,x \pmod{y}).$ Give recursive Algorithm! Base Case? gcd(x,0) = x. Extended-gcd(x, y) returns (d, a, b) d = gcd(x, y) and d = ax + byMultiplicative inverse of (x, m). $\operatorname{egcd}(x,m) = (1,a,b)$ a is inverse! $1 = ax + bm = ax \pmod{m}$. Idea: egcd. gcd produces 1 by adding and subtracting multiples of x and y

Wrapup.

Other issues.... admin@eecs70.org Private message on piazza.

Example: p = 7, q = 11. N = 77. (p-1)(q-1) = 60Choose e = 7, since gcd(7, 60) = 1. egcd(7, 60). 7(0) + 60(1) = 607(1) + 60(0) = 7

7(-8)+60(1) = 47(9)+60(-1) = 3

7(-17) + 60(2) = 1

Confirm: -119 + 120 = 1 $d = e^{-1} = -17 = 43 = \pmod{60}$