Lecture 7. Outline.

- Modular Arithmetic. Clock Math!!!
- Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!
- 3. Euclid's GCD Algorithm.
 A little tricky here!

Years and years...

```
80 years from now? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 2. It is day 2+366 \times 20+365 \times 60. Equivalent to? Hmm. What is remainder of 366 when dividing by 7? 52 \times 7+2. What is remainder of 365 when dividing by 7? 1 Today is day 2.
```

Get Day: $2+2\times20+1\times60=102$ Remainder when dividing by 7? $102=14\times7+4$. Or February 7, 2096 is Thursday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7. 60 has remainder 4 when divided by 7. Get Day: $2+2\times 6+1\times 4=18$.

Or Day 4. February 9, 2095 is Thursday.

"Reduce" at any time in calculation!

Clock Math

If it is 1:00 now.

What time is it in 2 hours? 3:00!

```
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!
Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

101 = 12 × 8 + 5.
5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1,...,11}
(Almost remainder, except for 12 and 0 are equivalent.)
```

Modular Arithmetic: refresher.

```
x is congruent to y modulo m or "x \equiv y \pmod{m}"
if and only if (x - y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y + km for some integer k.
Mod 7 equivalence classes:
 \{\ldots, -7, 0, 7, 14, \ldots\} \{\ldots, -6, 1, 8, 15, \ldots\} ...
Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y.
or " a \equiv c \pmod{m} and b \equiv d \pmod{m}
    \implies a+b \equiv c+d \pmod{m} and a \cdot b = c \cdot d \pmod{m}
Proof: If a \equiv c \pmod{m}, then a = c + km for some integer k.
If b \equiv d \pmod{m}, then b = d + im for some integer j.
Therefore, a+b=c+d+(k+j)m and since k+j is integer.
\implies a+b \equiv c+d \pmod{m}.
                                                                        Can calculate with representative in \{0, ..., m-1\}.
```

```
Day of the week.
```

```
Today is Monday.
 What day is it a year from now? on February 9, 2016?
   Number days.
    0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 2.
 5 days from now. day 7 or day 0 or Sunday.
 25 days from now. day 27 or day 6.
   two days are equivalent up to addition/subtraction of multiple of 7.
   11 days from now is day 6 which is Saturday!
What day is it a year from now?
 This year is not a leap year. So 365 days from now.
 Day 2+365 or day 367.
Smallest representation:
 subtract 7 until smaller than 7.
 divide and get remainder.
 367/7 leaves quotient of 52 and remainder 3.
   or February 7, 2018 is a Wednesday.
```

3/3

Notation

```
x\pmod m or \mod(x,m) remainder of x divided by m in \{0,\dots,m-1\}.  \mod(x,m)=x-\lfloor\frac{x}{m}\rfloor m   \lfloor\frac{x}{m}\rfloor \text{ is quotient.}   \mod(29,12)=29-(\lfloor\frac{29}{12}\rfloor)\times 12=29-(2)\times 12=\cancel{\textbf{X}}=5  Work in this system.  a\equiv b\pmod m.  Says two integers a and b are equivalent modulo m.   \pmb{Modulus} \text{ is } m   6\equiv 3+3\equiv 3+10\pmod 7.   6=3+3=3+10\pmod 7.  Generally, not 6\pmod 7=13\pmod 7.  But ok, if you really want.
```

5/32

Inverses and Factors.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

 $2 = 3 + pod 7 \text{ in od Gheck! } 4(3) = 12 = 5 \pmod{7}$.

Por 8 190600012) no multiplicative inverse!

For a Household 12 no multiplicative inverse: $x=3 \pmod{7}$. "Checking 35ctor 25 $\frac{4}{5}$ (mod 7). $8k-12\ell$ is a multiple of four for any ℓ and $k \implies$

 $8k \not\equiv 1 \pmod{12}$ for any k.

Proof Review 2: Bijections.

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique inverse.

Onto: the sizes of the domain and co-domain are the same.

x = 3, m = 4.

 $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$

Oh yeah. f(0) = 0.

Bijection \equiv unique inverse and same size.

Proved unique inverse.

$$x = 2, m = 4$$
.

$$f(1) = 2, f(2) = 0, f(3) = 2$$

Oh yeah. $f(0) = 0$.

Not a bijection.

Greatest Common Divisor and Inverses.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo *m*.

Proof \Longrightarrow : The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $v \equiv 1 \mod m$ if all distinct modulo m.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

 \implies One must correspond to 1 modulo m.

If not distinct, then $\exists a, b \in \{0, \dots, m-1\}, a \neq b$, where $(ax \equiv bx \pmod{m}) \Longrightarrow (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

gcd(x,m)=1

 \implies Prime factorization of *m* and *x* do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

So (a-b) has to be multiple of m.

 \implies $(a-b) \ge m$. But $a, b \in \{0, ...m-1\}$. Contradiction.

Finding inverses.

Find gcd(x, m).

Greater than 1? No multiplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

How to find the inverse?

How to find **if** *x* has an inverse modulo *m*?

Equal to 1? Mutliplicative inverse.

Very slow.

Proof review. Consequence.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

For x = 4 and m = 6. All products of 4...

 $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$

reducing (mod 6)

 $S = \{0,4,2,0,4,2\}$

Not distinct. Common factor 2.

For x = 5 and m = 6.

 $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

 $5x = 3 \pmod{6}$ What is x? Multiply both sides by 5.

 $x = 15 = 3 \pmod{6}$

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd.

 $4x = 2 \pmod{6}$ Two solutions! $x = 2.5 \pmod{6}$

Very different for elements with inverses.

Inverses

Next up.

Euclid's Algorithm.

Runtime.

Euclid's Extended Algorithm.

Refresh

```
Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any k\in\mathbb{N}. Does 2 have an inverse mod 9? Yes. 5 2(5)=10=1\mod 9. Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any k\in\mathbb{N}. 3=gcd(6,9)! x has an inverse modulo m if and only if gcd(x,m)>1? No. gcd(x,m)=1? Yes. Now what?: Compute gcd! Compute gcd! Compute Inverse modulo m.
```

Euclid's algorithm.

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's gcd(7.0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)? x
(define (euclid x y)
  (if (= y 0)
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x \ge y.
Proof: Use Strong Induction.
Base Case: y = 0, "x divides y and x"
           ⇒ "x is common divisor and clearly largest."
Induction Step: mod(x,y) < y \le x \text{ when } x \ge y
call in line (***) meets conditions plus arguments "smaller"
  and by strong induction hypothesis
  computes gcd(y, mod(x,y))
which is gcd(x, y) by GCD Mod Corollary.
```

Divisibility...

```
Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x + y) and d|(x - y). Is it a fact? Yes? No?

Proof: d|x and d|y or x = \ell d and y = kd
\implies x - y = kd - \ell d = (k - \ell)d \implies d|(x - y)
```

14/32

Excursion: Value and Size.

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1.000.000!

What is the "size" of 1.000.000?

Number of digits: 7.

Number of bits: 21.

For a number x, what is its size in bits?

 $n = b(x) \approx \log_2 x$

```
More divisibility
```

Notation: d|x means "d divides x" or x = kd for some integer k.

```
Lemma 1: If d|x and d|y then d|y and d|\mod(x,y).

Proof:
\mod(x,y) = x - \lfloor x/y \rfloor \cdot y
= x - \lfloor s \rfloor \cdot y \quad \text{for integer } s
= kd - s\ell d \quad \text{for integers } k, \ell \text{ where } x = kd \text{ and } y = \ell d
= (k - s\ell)d
Therefore d|\mod(x,y). And d|y since it is in condition.
```

Lemma 2: If d|y and $d| \mod (x,y)$ then d|y and d|x.

Proof...: Similar. Try this at home.

GCD Mod Corollary: $gcd(x,y) = gcd(y, \mod(x,y)).$

Proof: x and v have **same** set of common divisors as x and

mod(x,y) by Lemma.

Same common divisors \implies largest is the same.

15/32

□ish.

Euclid procedure is fast.

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$.

Is this good? Better than trying all numbers in $\{2, \dots, y/2\}$?

Check 2, check 3, check 4, check $5 \dots$, check y/2.

If $y \approx x$ roughly y uses n bits ...

 2^{n-1} divisions! Exponential dependence on size!

101 bit number. $2^{100} \approx 10^{30} =$ "million, trillion, trillion" divisions!

2n is much faster! .. roughly 200 divisions.

17/32

Algorithms at work.

Trying everything

Check 2, check 3, check 4, check $5 \dots$, check y/2. "(gcd x y)" at work.

```
euclid(700,568)
 euclid(568, 132)
   euclid(132, 40)
     euclid(40, 12)
       euclid(12, 4)
         euclid(4, 0)
```

Notice: The first argument decreases rapidly. At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Finding an inverse?

We showed how to efficiently tell if there is an inverse.

Extend euclid to find inverse.

Euclid's GCD algorithm.

Computes the gcd(x, y) in O(n) divisions.

For x and m, if gcd(x, m) = 1 then x has an inverse modulo m.

Proof.

```
(define (euclid x y)
(if (= y 0)
   (euclid y (mod x y))))
```

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

Rrep to of Fact: Depayle that sive exact many to he meases a eventuable.

Case reproving substituting all specificish is " $mod(x,y) \le x/2$."

White the property of the state of the state

 $\mod(x,y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \le x - x/2 = x/2$

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse. How do we **find** a multiplicative inverse?

Extended GCD

```
Euclid's Extended GCD Theorem: For any x,y there are integers a,b such that ax+by=d where d=\gcd(x,y).

"Make d out of sum of multiples of x and y."

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when \gcd(x,m)=1.

ax+bm=1
ax \equiv 1-bm \equiv 1 \pmod{m}.

So a multiplicative inverse of x \pmod{m}!!

Example: For x=12 and y=35, \gcd(12,35)=1.

(3)12+(-1)35=1.

a=3 and b=-1.

The multiplicative inverse of 12 (mod 35) is 3.
```

Extended GCD Algorithm.

```
ext-gcd(x,y)
  if y = 0 then return(x, 1, 0)
      else
      (d, a, b) := ext-gcd(y, mod(x,y))
      return (d, b, a - floor(x/y) * b)
```

Theorem: Returns (d, a, b), where d = qcd(a, b) and

$$d = ax + by$$
.

Make d out of x and y..?

```
\gcd(35,12)\\ \gcd(12,\ 11)\quad;;\quad\gcd(12,\ 35\$12)\\ \gcd(11,\ 1)\quad;;\quad\gcd(11,\ 12\$11)\\ \gcd(1,0)\quad 1 How did gcd get 11 from 35 and 12? 35-\left\lfloor\frac{35}{2}\right\rfloor 12=35-(2)12=11 How does gcd get 1 from 12 and 11? 12-\left\lfloor\frac{12}{11}\right\rfloor 11=12-(1)11=1 Algorithm finally returns 1. But we want 1 from sum of multiples of 35 and 12? Get 1 from 12 and 11. 1=12-(1)11=12-(1)(35-(2)12)=(3)12+(-1)35 Get 11 from 35 and 12 and plugin.... Simplify. a=3 and b=-1.
```

26/32

Correctness.

```
Proof: Strong Induction.<sup>1</sup>
Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y.
Induction Step: Returns (d,A,B) with d = Ax + By
Ind hyp: ext-gcd(y, mod (x,y)) returns (d,a,b) with d = ay + b(\mod(x,y))
ext-gcd(x,y) calls ext-gcd(y, mod (x,y)) so
d = ay + b \cdot (\mod(x,y))
= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)
= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y
```

And ext-gcd returns $(d, b, (a - \lfloor \frac{x}{v} \rfloor \cdot b))$ so theorem holds!

```
Extended GCD Algorithm.
```

```
ext-gcd(x,y)
  if y = 0 then return(x, 1, 0)
      else
      (d, a, b) := ext-gcd(y, mod(x,y))
      return (d, b, a - floor(x/y) * b)

Claim: Returns (d, a,b): d = gcd(a,b) and d = ax + by.

Example: a - [x/y] · b = 0[35[22]1[-0] + 3]

  ext-gcd(35,12)
  ext-gcd(11, 1)
      ext-gcd(11, 1)
      ext-gcd(11, 1)
      ext-gcd(11, 1)
      return (1,1,0) ;; 1 = (1)1 + (0) 0
      return (1,0,1) ;; 1 = (0)11 + (1)1
      return (1,1,-1) ;; 1 = (1)12 + (-1)11
      return (1,-1, 3) ;; 1 = (-1)35 + (3)12
```

Review Proof: step.

```
\begin{array}{l} \operatorname{ext-gcd}(\mathbf{x},\mathbf{y}) \\ \text{if } \mathbf{y} = \mathbf{0} \text{ then } \operatorname{return}(\mathbf{x}, \ \mathbf{1}, \ \mathbf{0}) \\ & \operatorname{else} \\ & (\mathbf{d}, \ \mathbf{a}, \ \mathbf{b}) := \operatorname{ext-gcd}(\mathbf{y}, \ \operatorname{mod}(\mathbf{x},\mathbf{y})) \\ & \operatorname{return} \ (\mathbf{d}, \ \mathbf{b}, \ \mathbf{a} - \operatorname{floor}(\mathbf{x}/\mathbf{y}) \ \star \ \mathbf{b}) \\ \\ \text{Recursively: } d = a\mathbf{y} + b(\mathbf{x} - \lfloor \frac{\mathbf{x}}{\mathbf{y}} \rfloor \cdot \mathbf{y}) \Longrightarrow d = b\mathbf{x} - (\mathbf{a} - \lfloor \frac{\mathbf{x}}{\mathbf{y}} \rfloor \mathbf{b})\mathbf{y} \\ \\ \text{Returns } (d, \mathbf{b}, (\mathbf{a} - \lfloor \frac{\mathbf{x}}{\mathbf{y}} \rfloor \cdot \mathbf{b})). \end{array}
```

29/3

¹Assume *d* is gcd(x, y) by previous proof.

Wrap-up