

Couple of more induction proofs. Stable Marriage.

Strengthening: need to...

Theorem: For all $n \ge 1$, $\sum_{i=1}^{n} \frac{1}{i^2} \le 2$. $(S_n = \sum_{i=1}^{n} \frac{1}{i^2}.)$ Base: P(1). $1 \le 2$. Ind Step: $\sum_{i=1}^{k} \frac{1}{i^2} \le 2$. $\sum_{i=1}^{k+1} \frac{1}{i^2}$ $= \sum_{i=1}^{k} \frac{1}{i^2} + \frac{1}{(k+1)^2}.$ $\le 2 + \frac{1}{(k+1)^2}$ Uh oh?

Hmmm... It better be that any sum is *strictly less than* 2. How much less? At least by $\frac{1}{(k+1)^2}$ for S_k . " $S_k \leq 2 - \frac{1}{(k+1)^2}$ " \implies " $S_{k+1} \leq 2$ " Induction step works! No! Not the same statement!!!!

Need to prove "
$$S_{k+1} \le 2 - \frac{1}{(k+2)^2}$$
".

Darn!!!

Strenthening: how?

Theorem: For all $n \ge 1$, $\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - f(n)$. $(S_n = \sum_{i=1}^{n} \frac{1}{i^2})$ **Proof:**

Ind hyp: $P(k) - "S_k \le 2 - f(k)"$ Prove: $P(k+1) - "S_{k+1} \le 2 - f(k+1)"$

$$S(k+1) = S_k + rac{1}{(k+1)^2} \le 2 - f(k) + rac{1}{(k+1)^2}$$
 By ind. hyp.

Choose $f(k+1) \leq f(k) - \frac{1}{(k+1)^2}$. $\implies S(k+1) \leq 2 - f(k+1)$.

Can you?

Subtracting off a quadratically decreasing function every time. Maybe a linearly decreasing function to keep positive? Try $f(k) = \frac{1}{k}$

I

$$\begin{aligned} &\frac{1}{k+1} \le \frac{1}{k} - \frac{1}{(k+1)^2} ?\\ &1 \le \frac{k+1}{k} - \frac{1}{k+1} & \text{Multiplied by } k+1.\\ &1 \le 1 + (\frac{1}{k} - \frac{1}{k+1}) & \text{Some math. So yes} \end{aligned}$$

Theorem: For all $n \ge 1$, $\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - \frac{1}{n}$.

Stable Marriage Problem

- Small town with *n* boys and *n* girls.
- Each girl has a ranked preference list of boys.
- Each boy has a ranked preference list of girls.

How should they be matched?

Count the ways ..

- Maximize total satisfaction.
- Maximize number of first choices.
- Maximize worse off.
- Minimize difference between preference ranks.

The best laid plans..

Consider the couples..

- Jennifer and Brad
- Angelina and Billy-Bob

Brad prefers Angelina to Jennifer. Angelina prefers Brad to BillyBob. Uh..oh. Produce a pairing where there is no running off!

Definition: A **pairing** is disjoint set of *n* boy-girl pairs.

Example: A pairing $S = \{(Brad, Jen); (BillyBob, Angelina)\}$.

Definition: A rogue couple b, g^* for a pairing *S*: *b* and g^* prefer each other to their partners in *S*

Example: Brad and Angelina are a rogue couple in S.

A stable pairing??

Given a set of preferences.

Is there a stable pairing? How does one find it?

Consider a single gender version: stable roommates.

The Traditional Marriage Algorithm.

Each Day:

- 1. Each boy **proposes** to his favorite girl on his list.
- 2. Each girl rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected boy crosses rejecting girl off his list.

Stop when each girl gets exactly one proposal. Does this terminate?

...produce a pairing?

....a stable pairing?

Do boys or girls do "better"?

Example.

Boys				Girls						
A	X	2	3			1	C	Α	в	
В	X	X	3			2	A	В	C	
C	X	1	3			3	A	С	B	
	Day 1		Day 2		Day 3	3 I	Day 4	Da	ay 5	
1	Α, 🗶		А		X , C		С		С	
2	C		в, 🔀		В		A,X		Α	
3								В		

Termination.

Every non-terminated day a boy **crossed** an item off the list. Total size of lists? *n* boys, *n* length list. n^2 Terminates in at most $n^2 + 1$ steps!

It gets better every day for girls..

Improvement Lemma: It just gets better for girls.

If on day *t* a girl *g* has a boy *b* on a string, any boy, *b'*, on *g*'s string for any day t' > tis at least as good as *b*.

Proof:

P(k)- - "boy on g's string is at least as good as b on day t + k"

P(0)- true. Girl has b on string.

Assume P(k). Let b' be boy on string on day t + k.

On day t + k + 1, boy b' comes back. Girl can choose b', or do better with another boy, b''

That is, $b \le b'$ by induction hypothesis.

And b'' is better than b' by algorithm.

 \implies Girl does at least as well as with *b*.

 $P(k) \implies P(k+1)$. And by principle of induction.

Pairing when done.

Lemma: Every boy is matched at end.

Proof:

If not, a boy *b* must have been rejected *n* times.

Every girl has been proposed to by *b*, and Improvement lemma

 \implies each girl has a boy on a string.

and each boy is on at most one string.

n girls and n boys. Same number of each.

 \implies *b* must be on some girl's string!

Contradiction.

Pairing is Stable.

Lemma: There is no rogue couple for the pairing formed by traditional marriage algorithm.

Proof:

Assume there is a rogue couple; (b, g^*)

b likes g^* more than g.

 g^* likes b more than b^* .

Boy *b* proposes to g^* before proposing to *g*.

So g^* rejected b (since he moved on)

By improvement lemma, g^* likes b^* better than b.

Contradiction!

Good for boys? girls?

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any stable pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'*s* partner is its worst partner in any stable pairing.

Definition: A **pairing is boy optimal** if it is *x*-optimal for **all** boys *x*.

..and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing. As well as you can be in a globally stable solution!

Question: Is there a boy or girl optimal pairing? Is it possible:

b-optimal pairing different from the *b*'-optimal pairing! Yes? No?

TMA is optimal!

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl *g* who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

By choice of t, b^* prefers g to optimal girl.

 $\implies b^*$ prefers g to his partner g^* in S.

Rogue couple for S.

So S is not a stable pairing. Contradiction.

Notes: S - stable. $(b^*, g^*) \in S$. But (b^*, g) is rogue couple!

Used Well-Ordering principle...Induction.

How about for girls?

Theorem: TMA produces girl-pessimal pairing.

- T pairing produced by TMA.
- S worse stable pairing for girl g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.

g likes b^* less than she likes b.

T is boy optimal, so b likes g more than his partner in S.

(g, b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.

Structural statement: Boy optimality \implies Girl pessimality.

How does one make it better for girls?

SMA - stable marriage algorithm. One side proposes. TMA - boys propose. Girls could propose. \implies optimal for girls. The method was used to match residents to hospitals.

Hospital optimal....

.. until 1990's...Resident optimal.

Another variation: couples.

Summary.

