Today.

Couple of more induction proofs.
Stable Marriage.

Strengthening: need to...

Theorem: For all $n \geq 1, \sum_{i=1}^{n} \frac{1}{2} \leq 2 .\left(S_{n}=\sum_{i=1}^{n} \frac{1}{\mathcal{L}^{2}}.\right)$
Base: $P(1) .1 \leq 2$
Ind Step: $\sum_{i=1}^{k} \frac{1}{i^{2}} \leq 2$
$\sum_{i=1}^{k+1} \frac{1}{\sum^{2}}$
$=\sum_{i=1}^{k} \frac{1}{L^{2}}+\frac{1}{(k+1)^{2}}$.
$\leq 2+\frac{1}{(k+1)^{2}}$
Uh oh?
Hmmm... It better be that any sum is strictly less than 2.
How much less? At least by $\frac{1}{(k+1)^{2}}$ for S_{k}
" $S_{k} \leq 2-\frac{1}{(k+1)^{2}}$ " $\Longrightarrow S_{k+1} \leq 2$ "
Induction step works! No! Not the same statement!!!!
Need to prove " $S_{k+1} \leq 2-\frac{1}{(k+2)^{2}}$ ".
Darn!!!

Count the ways..

- Maximize total satisfaction.
- Maximize number of first choices.
- Maximize worse off.
- Minimize difference between preference ranks.

Strenthening: how?
Theorem: For all $n \geq 1, \sum_{i=1}^{n} \frac{1}{i^{2}} \leq 2-f(n) .\left(S_{n}=\sum_{i=1}^{n} \frac{1}{i^{2}}\right.$. $)$
Proof:
Ind hyp: $P(k)-$ " $S_{k} \leq 2-f(k)$ "
Prove: $P(k+1)-" S_{k+1} \leq 2-f(k+1)$ "
$S(k+1)=S_{k}+\frac{1}{(k+1)^{2}}$
$\leq 2-f(k)+\frac{1}{(k+1)^{2}}$ By ind. hyp.
Choose $f(k+1) \leq f(k)-\frac{1}{(k+1)^{2}}$.
$\Longrightarrow S(k+1) \leq 2-f(k+1)$.
Can you?
Subtracting off a quadratically decreasing function every time. Maybe a linearly decreasing function to keep positive?
Try $f(k)=\frac{1}{k}$
$\frac{1}{k+1} \leq \frac{1}{k}-\frac{1}{(k+1)^{2}}$?
$1 \leq \frac{k+1}{k}-\frac{1}{k+1}$ Multiplied by $k+1$.
$1 \leq 1+\left(\frac{1}{k}{ }^{k+1} \frac{1}{k+1}\right) \quad$ Some math. So yes
Theorem: For all $n \geq 1, \sum_{i=1}^{n} \frac{1}{i^{2}} \leq 2-\frac{1}{n}$.
The best laid plans..

Consider the couples.

- Jennifer and Brad
- Angelina and Billy-Bob

Brad prefers Angelina to Jennifer

Angelina prefers Brad to BillyBob
Uh..oh.

So..

Produce a pairing where there is no running off!
Definition: A pairing is disjoint set of n boy-girl pairs.
Example: A pairing $S=\{($ Brad, Jen $) ;$ (BillyBob, Angelina $)\}$
Definition: A rogue couple b, g^{*} for a pairing S :
b and g^{*} prefer each other to their partners in S
Example: Brad and Angelina are a rogue couple in S.

Example.

A	Boys		Girls		
	X 2	3		$1\|\mid C$	A B
	X X	3		2 A	B C
	\% 1	3			C B
	Day 1	Day 2	Day 3	Day 4	Day 5
1	A, \%	A	X, C	C	C
2	C	B, 炎	B	A, ${ }_{\text {A }}$	A
3					B

A stable pairing??

Given a set of preferences
Is there a stable pairing?
How does one find it?
Consider a single gender version: stable roommates.
A \mid B C \quad D
B $\begin{array}{llll}\text { C } & \text { A } & \text { D }\end{array}$
C $\begin{array}{llll}\text { A } & \text { B } & \text { D }\end{array}$
D A B C

Termination.

Every non-terminated day a boy crossed an item off the list
Total size of lists? n boys, n length list. n^{2}
Terminates in at most $n^{2}+1$ steps

The Traditional Marriage Algorithm.

Each Day:

1. Each boy proposes to his favorite girl on his list
2. Each girl rejects all but her favorite proposer (whom she puts on a string.)
3. Rejected boy crosses rejecting girl off his list

Stop when each girl gets exactly one proposal.
Does this terminate?
...produce a pairing?
....a stable pairing?
Do boys or girls do "better"?

It gets better every day for girls..

mprovement Lemma: It just gets better for girls.

If on day t a girl g has a boy b on a string
any boy, b^{\prime}, on g^{\prime} 's string for any day $t^{\prime}>t$
is at least as good as b.
Proof:
$P(k)$ - - "boy on g 's string is at least as good as b on day $t+k$ " $P(0)$ - true. Girl has b on string
Assume $P(k)$. Let b^{\prime} be boy on string on day $t+k$.
On day $t+k+1$, boy b^{\prime} comes back.
Girl can choose b^{\prime}, or do better with another boy, $b^{\prime \prime}$
That is, $b \leq b^{\prime}$ by induction hypothesis.
And $b^{\prime \prime}$ is better than b^{\prime} by algorithm.
\Longrightarrow Girl does at least as well as with b.
$P(k) \Longrightarrow P(k+1)$. And by principle of induction

Pairing when done.

Lemma: Every boy is matched at end
Proof:
If not, a boy b must have been rejected n times
Every girl has been proposed to by b,
and Improvement lemma
\Longrightarrow each girl has a boy on a string
and each boy is on at most one string
n girls and n boys. Same number of each
$\Longrightarrow b$ must be on some girl's string!
Contradiction

TMA is optimal!

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing
Proof:
Assume not: there are boys who do not get their optimal girl.
Let t be first day a boy b gets rejected
by his optimal girl g who he is paired with
in stable pairing S.
b^{*} - knocks b off of g 's string on day $t \Longrightarrow g$ prefers b^{*} to b By choice of t, b^{*} prefers g to optimal girl
$\Longrightarrow b^{*}$ prefers g to his partner g^{*} in S.
Rogue couple for S.
So S is not a stable pairing. Contradiction.
Notes: S - stable. $\left(b^{*}, g^{*}\right) \in S$. But $\left(b^{*}, g\right)$ is rogue couple!
Used Well-Ordering principle...Induction.

Pairing is Stable.

Lemma: There is no rogue couple for the pairing formed by traditional marriage algorithm

Proof
Assume there is a rogue couple; $\left(b, g^{*}\right)$

b likes g^{*} more than g
g^{*} likes b more than b^{*}

Boy b proposes to g^{*} before proposing to g
So g^{*} rejected b (since he moved on)
By improvement lemma, g^{*} likes b^{*} better than b
Contradiction!

How about for girls?

Theorem: TMA produces girl-pessimal pairing

T - pairing produced by TMA
S - worse stable pairing for girl g.
In $T,(g, b)$ is pair.
In S, $\left(g, b^{*}\right)$ is pair
g likes b^{*} less than she likes b.
T is boy optimal, so b likes g more than his partner in S.
(g, b) is Rogue couple for S
S is not stable.
Contradiction.
Notes: Not really induction.
Structural statement: Boy optimality \Longrightarrow Girl pessimality.

Good for boys? girls?

Is the TMA better for boys? for girls?
Definition: A pairing is x-optimal if $x^{\prime} s$ partne
is its best partner in any stable pairing.
Definition: A pairing is x-pessimal if $x^{\prime} s$ partner
is its worst partner in any stable pairing
Definition: A pairing is boy optimal if it is x-optimal for all boys x
.and so on for boy pessimal, girl optimal, girl pessimal.
Claim: The optimal partner for a boy must be first in his preference list.

True? False? False
Subtlety here: Best partner in any stable pairing
As well as you can be in a globally stable solution!
Question: Is there a boy or girl optimal pairing? Is it possible:
b-optimal pairing different from the b^{\prime}-optimal pairing es? No?

Quick Questions

How does one make it better for girls?
SMA - stable marriage algorithm. One side proposes.
TMA - boys propose
Girls could propose. \Longrightarrow optimal for girls.

Residency Matching..

The method was used to match residents to hospitals.
Hospital optimal....
.until 1990's...Resident optimal.
Another variation: couples.

Don't go!	
Summary.	

\square

