Today.	Strengthening: need to	Strenthening: how? Theorem: For all $n \ge 1$, $\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - f(n)$. $(S_n = \sum_{i=1}^{n} \frac{1}{i^2}.)$
Couple of more induction proofs. Stable Marriage.	Theorem: For all $n \ge 1$, $\sum_{i=1}^{n} \frac{1}{i^2} \le 2$. $(S_n = \sum_{i=1}^{n} \frac{1}{i^2})$ Base: $P(1)$. $1 \le 2$. Ind Step: $\sum_{i=1}^{k} \frac{1}{i^2} \le 2$. $\sum_{i=1}^{k+1} \frac{1}{i^2}$ $= \sum_{i=1}^{k} \frac{1}{i^2} + \frac{1}{(k+1)^2}$. $\le 2 + \frac{1}{(k+1)^2}$ Uh oh? Hmm It better be that any sum is <i>strictly less than</i> 2. How much less? At least by $\frac{1}{(k+1)^2}$ for S_k . " $S_k \le 2 - \frac{1}{(k+1)^2}$ " \Longrightarrow " $S_{k+1} \le 2$ " Induction step works! No! Not the same statement!!!! Need to prove " $S_{k+1} \le 2 - \frac{1}{(k+2)^2}$ ". Darn!!!	Proof: Ind hyp: $P(k) - "S_k \le 2 - f(k)"$ Prove: $P(k+1) - "S_{k+1} \le 2 - f(k+1)"$ $S(k+1) = S_k + \frac{1}{(k+1)^2}$ $\le 2 - f(k) + \frac{1}{(k+1)^2}$ By ind. hyp. Choose $f(k+1) \le f(k) - \frac{1}{(k+1)^2}$. $\implies S(k+1) \le 2 - f(k+1)$. Can you? Subtracting off a quadratically decreasing function every time. Maybe a linearly decreasing function to keep positive? Try $f(k) = \frac{1}{k}$ $\frac{1}{k+1} \le \frac{1}{k} - \frac{1}{(k+1)^2}$? $1 \le \frac{k+1}{k} - \frac{1}{k+1}$ Multiplied by $k+1$. $1 \le 1 + (\frac{1}{k} - \frac{1}{k+1})$ Some math. So yes! Theorem: For all $n \ge 1$, $\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - \frac{1}{n}$.
Stable Marriage Problem	Count the ways	The best laid plans
 Small town with <i>n</i> boys and <i>n</i> girls. Each girl has a ranked preference list of boys. Each boy has a ranked preference list of girls. How should they be matched? 	 Maximize total satisfaction. Maximize number of first choices. Maximize worse off. Minimize difference between preference ranks. 	Consider the couples Jennifer and Brad Angelina and Billy-Bob Brad prefers Angelina to Jennifer. Angelina prefers Brad to BillyBob. Uhoh.

3/20

6/20

Pairing when done.

Lemma: Every boy is matched at end.
Proof:
If not, a boy *b* must have been rejected *n* times.
Every girl has been proposed to by *b*, and Improvement lemma
⇒ each girl has a boy on a string.
and each boy is on at most one string. *n* girls and *n* boys. Same number of each.
⇒ *b* must be on some girl's string!
Contradiction.

TMA is optimal!

For boys? For girls? Theorem: TMA produces a boy-optimal pairing. Proof: Assume not: there are boys who do not get their optimal girl. Let *t* be first day a boy *b* gets rejected by his optimal girl g who he is paired with in stable pairing S. b^* - knocks b off of g's string on day $t \implies q$ prefers b^* to b By choice of t, b^* prefers q to optimal girl. \implies b^{*} prefers g to his partner g^{*} in S. Rogue couple for S. So S is not a stable pairing. Contradiction. Notes: S - stable. $(b^*, g^*) \in S$. But (b^*, g) is rogue couple! Used Well-Ordering principle...Induction. 16/20

Pairing is Stable.

13/20

Lemma: There is no rogue couple for the pairing formed by traditional marriage algorithm.

Proof: Assume there is a rogue couple; (b, g^*)

b likes g^* more than *g*. g^* likes *b* more than b^* .

17/20

14/20

Boy *b* proposes to g^* before proposing to *g*.

So g^* rejected b (since he moved on) By improvement lemma, g^* likes b^* better than b. Contradiction!

How about for girls? Theorem: TMA produces girl-pessimal pairing. T – pairing produced by TMA. S – worse stable pairing for girl g. In T (g, b) is pair

In *T*, (*g*, *b*) is pair. In *S*, (*g*, *b*^{*}) is pair. *g* likes *b*^{*} less than she likes *b*. *T* is boy optimal, so *b* likes *g* more than his partner in *S*. (*g*, *b*) is Rogue couple for *S S* is not stable. Contradiction. Notes: Not really induction. Structural statement: Boy optimality \implies Girl pessimality.

Good for boys? girls?

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any stable pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'*s* partner is its worst partner in any stable pairing.

Definition: A **pairing is boy optimal** if it is *x*-optimal for **all** boys *x*.

.. and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing. As well as you can be in a globally stable solution!

Question: Is there a boy or girl optimal pairing? Is it possible: *b*-optimal pairing different from the *b*'-optimal pairing! Yes? No?

1	5	0	n

Quick Questions.

How does one make it better for girls?
SMA - stable marriage algorithm. One side proposes
TMA - boys propose.

Girls could propose. \implies optimal for girls.

18/20

Residency Matching	Don't go!
The method was used to match residents to hospitals. Hospital optimal until 1990'sResident optimal. Another variation: couples.	Summary.
19/20	20/20