Review

Now...

TMA.

Traditional Marriage Algorithm:
Each Day:
All men propose to favorite woman who has not yet rejected
him.
Every woman rejects all but best men who proposes.
Useful Algorithmic Definitions
Man crosses off woman who rejected him
Woman's current proposer is "on string."
"Propose and Reject." : Either men propose or women. But not both.
Traditional propose and reject where men propose.
Key Property: Improvement Lemma:
Every day, if man on string for woman,
\Longrightarrow any future man on string is better.
Stability: No rogue couple
rogue couple (M, W)
$\Longrightarrow \mathrm{M}$ proposed to W
$\Longrightarrow W$ ended up with someone she liked better than M Not rogue couple!

Induction

$P(0) \wedge((\forall n)(P(n) \Longrightarrow P(n+1) \equiv(\forall n \in N) P(n)$.
Thm: For all $n \geq 1,8 \mid 3^{2 n}-1$.
Induction on n.
Base: $83^{2}-1$.
Induction Hypothesis: Assume $P(n)$: True for some n.
$\left(3^{2 n}-1=8 d\right)$
Induction Step: Prove $P(n+1)$
$3^{2 n+2}-1=9\left(3^{2 n}\right)-1$ (by induction hypothesis) $=9(8 d+1)-1$
$=72 d+8$
$=8(9 d+1)$
Divisible by 8 .
..Graphs...
$G=(V, E)$
V - set of vertices.
$E \subseteq V \times V$ - set of edges
Directed: ordered pair of vertices.
Adjacent, Incident, Degree In-degree, Out-degree.

Thm: Sum of degrees is $2|E|$.
Edge is incident to 2 vertices.
Degree of vertices is total incidences.
Pair of Vertices are Connected:
If there is a path between them.
Connected Component: maximal set of connected vertices
Connected Graph: one connected component.

Stable Marriage: a study in definitions and WOP

n-men, n-women

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs $\left(m_{i}, w_{i}\right)$ containing all people exactly once.
How many pairs? n.
People in pair are partners in pairing.

Rogue Couple in a pairing.

A m_{j} and w_{k} who like each other more than their partners

Stable Pairing.

Pairing with no rogue couples.
Does stable pairing exist?
No, for roommates problem.

Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.
Algorithm:
Take a walk using each edge at most once
Property: return to starting point.
Proof Idea: Even degree.
Recurse on connected components
Put together.
Property: walk visits every component.
Proof Idea: Original graph connected.

Graph Coloring.

Given $G=(V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors. Fewer colors than number of vertices. Fewer colors than max degree node.
Interesting things to do. Algorithm!

Graph Types: Complete Graph.

$K_{n},|V|=n$
every edge present.
degree of vertex? $|V|-1$
Very connected
Lots of edges: $n(n-1) / 2$

Planar graphs and maps.

Planar graph coloring \equiv map coloring

Four color theorem is about planar graphs!

Trees

Definitions:

A connected graph without a cycle.
A connected graph with $|V|-1$ edges.
A connected graph where any edge removal disconnects it.
An acyclic graph where any edge addition creates a cycle. Minimally connected, minimum number of edges to connect.

Property:
Can remove a single node and break into components of size a most $|V| / 2$.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.
Proof:
Recall: $e \leq 3 v-6$ for any planar graph where $v>2$.
From Euler's Formula.
Total degree: $2 e$
Average degree: $\leq \frac{2 e}{v} \leq \frac{2(3 v-6)}{v} \leq 6-\frac{12}{v}$.
There exists a vertex with degree <6 or at most 5
Remove vertex v of degree at most 5
Inductively color remaining graph
Color is available for v since only five neighbors..
and only five colors are used.

Hypercube

Hypercubes. Really connected. $|V| \log |V|$ edges! Also represents bit-strings nicely
$G=(V, E)$
$|V|=\{0,1\}^{n}$,
$|E|=\{(x, y) \mid x$ and y differ in one bit position. $\}$
$0 \quad 1$
$-$

...Modular Arithmetic...

Arithmetic modulo m.
Elements of equivalence classes of integers.
$\{0, \ldots, m-1\}$
if $i=a+k m$ for in
or if the remainder of i divided by m is a.
Can do calculations by taking remainders
at the beginning,
in the middle
or at the end.
$58+32=90=6(\bmod 7)$
$58+32=2+4=6(\bmod 7)$
$58+32=2+-3=-1=6(\bmod 7)$
Negative numbers work the way you are used to. $-3=0-3=7-3=4(\bmod 7)$
Additive inverses are intuitively negative numbers.

Example: $p=7, q=11$.

$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$.
$\operatorname{egcd}(7,60)$.

$$
\begin{aligned}
7(0)+60(1) & =60 \\
7(1)+60(0) & =7 \\
7(-8)+60(1) & =4 \\
7(9)+60(-1) & =3 \\
7(-17)+60(2) & =1
\end{aligned}
$$

Confirm: $-119+120=$

$d=e^{-1}=-17=43=(\bmod 60)$

Modular Arithmetic and multiplicative inverses.
$3^{-1}(\bmod 7) ? 5$
$5^{-1}(\bmod 7) ? 3$
Inverse Unique? Yes
Proof: a and b inverses of $x(\bmod n)$ $a x=b x=1(\bmod n)$ $a x b=b \times b=b(\bmod n)$ $a=b(\bmod n)$.
$3^{-1}(\bmod 6)$? No, no, no....
$\{3(1), 3(2), 3(3), 3(4), 3(5)\}$
$\{3,6,3,6,3\}$
See,... no inverse

Fermat from Bijection.

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$a^{p-1} \equiv 1(\bmod p)$.

Proof: Consider $T=\{a \cdot 1(\bmod p), \ldots, a \cdot(p-1)(\bmod p)\}$.
T is range of function $f(x)=a x \bmod (p)$ for set $S=\{1, \ldots, p-1\}$.
Invertible function: one-to-one
$T \subseteq S$ since $0 \notin T$.
$\stackrel{p \text { is prime. }}{\Longrightarrow} T=S$.
Product of elts of $T=$ Product of elts of S.

$$
(a \cdot 1) \cdot(a \cdot 2) \cdots(a \cdot(p-1)) \equiv 1 \cdot 2 \cdots(p-1) \bmod p,
$$

Since multiplication is commutative

$$
\mathrm{a}^{(p-1)}(1 \cdots(p-1)) \equiv(1 \cdots(p-1)) \quad \bmod p
$$

Each of $2, \ldots(p-1)$ has an inverse modulo p,
mulitply by inverses to get..
$a^{(p-1)} \equiv 1 \bmod p$.

Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $\operatorname{gcd}(x, m)=1$.
Group structures more generally.
Proof Idea:
$\{0 x, \ldots,(m-1) x\}$ are distinct modulo m if and only if $\operatorname{gcd}(x, m)=1$
Finding gcd.
$\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x-y)=\operatorname{gcd}(y, x(\bmod y))$.
Give recursive Algorithm! Base Case? $\operatorname{gcd}(x, 0)=x$.
Extended-gcd (x, y) returns (d, a, b)
$d=\operatorname{gcd}(x, y)$ and $d=a x+b y$
Multiplicative inverse of (x, m),
$\operatorname{egcd}(x, m)=(1, a, b)$
a is inverse! $1=a x+b m=a x(\bmod m)$
Idea: egcd.
gcd produces 1
by adding and subtracting multiples of x and y

RSA

RSA:
$N=p, q$
e with $\operatorname{gcd}(e,(p-1)(q-1))=1$.
$d=e^{-1}(\bmod (p-1)(q-1))$.
Theorem: $x^{e d}=x(\bmod N)$
Proof:
$x^{e d}-x$ is divisible by p and $q \Longrightarrow$ theorem!

$$
x^{e d}-x=x^{k(p-1)(q-1)+1}-x=x\left(\left(x^{k(q-1)}\right)^{p-1}-1\right)
$$

If x is divisible by p, the product is
Otherwise $\left(x^{k(q-1)}\right)^{p-1}=1(\bmod p)$ by Fermat.
$\Longrightarrow\left(x^{k(q-1)}\right)^{p-1}-1$ divisible by p.
Similarly for q.

RSA, Public Key, and Signatures.

RSA:
$N=p, q$
e with $\operatorname{gcd}(e,(p-1)(q-1))$.
$d=e^{-1}(\bmod (p-1)(q-1))$.
Public Key Cryptography:
$D(E(m, K), k)=\left(m^{e}\right)^{d} \bmod N=m$.
Signature scheme:
$S(C)=D(C)$.
Announce ($C, S(C)$)
Verify: Check $C=E(C)$.
$E(D(C, k), K)=\left(C^{d}\right)^{e}=C(\bmod N)$

Counting.

First Rule: Enumerate objects with sequence of choices.
Number of Objects: $n_{1} \times n_{2} \ldots$
Example: Poker deals
Second Rule: Divide out if by ordering of same objects.
Example: Poker hands. Orderings of ANAGRAM.
Sum Rule: If sets of objects disjoint add sizes
Example: Hands with joker, hands without.
Inclusion/Exclusion: For arbtrary sets A, B.
$|A \cup B|=|A|+|B|-|A \cap B|$
Example: 10 digit numbers with 9 in the first or second digit.

Fermat/RSA

$3^{6}(\bmod 7)$? 1. Fermat: $p=7, p-1=6$
$3^{18}(\bmod 7) ? 1$.
$3^{60}(\bmod 7) ? 1$.
$3^{61}(\bmod 7) ? 3$.
$2^{12}(\bmod 21) ? 1$
$21=(3)(7)(p-1)(q-1)=(2)(6)=12$
$\operatorname{gcd}(2,12)=1, x^{(p-1)(q-1)}=1(\bmod p q) 2^{12}=1(\bmod 21)$.
$2^{1} 4(\bmod 21)$? 4 . Technically $4(\bmod 21)$.

Combinatorial Proofs

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$? $\binom{n+1}{k}$
How many size k subsets of $n+1$?
How many contain the first element?
Chose first element, need to choose $k-1$ more from remaining n elements.
$\Longrightarrow\binom{n}{k-1}$
How many don't contain the first element?
Need to choose k elements from remaining n elts.
$\Longrightarrow\binom{n}{k}$
So, $\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}$.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and $T,|S \cup T|=|S|+|T|$
Example: How many permutations of n items start with 1 or 2? $1 \times(n-1)!+1 \times(n-1)$!

nclusion/Exclusion Rule: For any S and T,

$S \cup T|=|S|+|T|-|S \cap T|$.
xample: How many 10 -digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit. $|S|=10^{9}$
$T=$ phone numbers with 7 as second digit. $|T|=10^{9}$.
$S \cap T=$ phone numbers with 7 as first and second digit. $|S \cap T|=10^{8}$.
Answer: $|S|+|T|-|S \cap T|=10^{9}+10^{9}-10^{8}$.

Uncountability/Undecidability.

Integers are countable

Reals are not.
Why? Diagonalization
Halt is undecidable.
Why? Diagonalization
Reductions from Halt give more undecidable problems
Reductions use program for problem A to solve HALT.
Concept 1: can call program A
Concept 2: One can modify text of input program (to HALT).

CS70: Review of Probability.

Probability Review

1. True or False
2. Some Key Results
3. Quiz 1: G
4. Quiz 2: PG
5. Quiz 3: R
6. Common Mistakes

Match Items
[1] $\operatorname{Pr}[X \geq a] \leq \frac{E[f(X)]}{f(a)}$
[2] $\operatorname{Pr}[|X-E[X]|>a] \leq \frac{\operatorname{var}[X]}{a^{2}}$
[3] $\operatorname{Pr}[X \geq a] \leq \min _{\theta>0} \frac{E\left[e^{\theta X}\right]}{e^{\theta a}}$
[5] $E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])$.
[7] $\operatorname{Pr}\left[\left|\frac{X_{1}+\cdots+X_{n}}{n}-E\left[X_{1}\right]\right| \geq \varepsilon\right]$

- WLLN (7)
- MMSE (6)
- Projection property (8)
- Chebyshev (2)
- LLSE (5)
- Markov's inequality (1)

True or False

- Ω and A are independent. True
- $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cup B]$. True
- $\operatorname{Pr}[A \backslash B] \geq \operatorname{Pr}[A]-\operatorname{Pr}[B]$. True
- X_{1}, \ldots, X_{n} i.i.d. $\Longrightarrow \operatorname{var}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\operatorname{var}\left(X_{1}\right)$. False: $\times \frac{1}{n}$
- $\operatorname{Pr}[|X-a| \geq b] \leq \frac{E\left[(X-a)^{2}\right]}{b^{2}}$. True
- X_{1}, \ldots, X_{n} i.i.d. $\Longrightarrow \frac{X_{1}+\cdots+X_{n}-n E\left[X_{1}\right]}{n \sigma\left(X_{1}\right)} \rightarrow \mathscr{N}(0,1)$. False: \sqrt{n}
- $X=\operatorname{Expo}(\lambda) \Longrightarrow \operatorname{Pr}[X>5 \mid X>3]=\operatorname{Pr}[X>2]$. True:

$$
\frac{\exp \{-\lambda 5\}}{\exp \{-\lambda\}\}}=\exp \{-\lambda 2\} .
$$

Quiz 1: G

1. What is $P[A \mid B]$?
$\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\frac{0.4}{0.7}$
2. What is $\operatorname{Pr}[B \mid A]$?
$\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}=\frac{0.4}{0.6}$
3. Are A and B positively correlated?

No. $\operatorname{Pr}[A \cap B]=0.4<\operatorname{Pr}[A] \operatorname{Pr}[B]=0.6 \times 0.7$.

Correct or not?

When $n \gg 1$, one has

- $\left[A_{n}-2 \sigma \frac{1}{n}, A_{n}+2 \sigma \frac{1}{n}\right]=95 \%-\mathrm{Cl}$ for μ. No
- $\left[A_{n}-2 \sigma \frac{1}{\sqrt{n}}, A_{n}+2 \sigma \frac{1}{\sqrt{n}}\right]=95 \%-\mathrm{Cl}$ for μ. Yes
- If $0.3<\sigma<3$, then
$\left[A_{n}-0.6 \frac{1}{\sqrt{n}}, A_{n}+0.6 \frac{1}{\sqrt{n}}\right]=95 \%-\mathrm{Cl}$ for μ. No
- If $0.3<\sigma<3$, then

$$
\left[A_{n}-6 \frac{1}{\sqrt{n}}, A_{n}+6 \frac{1}{\sqrt{n}}\right]=95 \%-\mathrm{Cl} \text { for } \mu \text {. Yes }
$$

Quiz 1: G

4. What is $E[Y \mid X]$?
$E[Y \mid X=0]=0 \times \operatorname{Pr}[Y=0 \mid X=0]+2 \times \operatorname{Pr}[Y=2 \mid X=0]$

$$
=2 \times \frac{0.3}{0.4}=1.5
$$

$E[Y \mid X=1]=0 \times \operatorname{Pr}[Y=0 \mid X=1]+2 \times \operatorname{Pr}[Y=2 \mid X=1]$

$$
=2 \times \frac{0.4}{0.6}=1.33
$$

5. What is $\operatorname{cov}(X, Y)$?
$\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=0.8-0.6 \times 1.4=-0.04$
6. What is $L[Y \mid X]$?
$L[Y \mid X]=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])=1.4+\frac{-0.04}{0.6 \times 0.4}(X-0.6)$

Quiz 1: G

7. Is this Markov chains irreducible? Yes.
8. Is this Markov chain periodic?

No. The return times to 3 are $\{3,5, .$.$\} : coprime!$
9. Does π_{n} converge to a value independent of π_{0} ? Yes!
10. Does $\frac{1}{n} \sum_{m=1}^{n-1} 1\left\{X_{m}=3\right\}$ converge as $n \rightarrow \infty$? Yes!
11. Calculate π.

Let $a=\pi(1)$. Then $a=\pi(5), \pi(2)=0.5 a, \pi(4)=\pi(2)=$ $0.5 a, \pi(3)=0.5 \pi(1)+\pi(4)=a$. Thus $\pi=[a, 0.5 a, a, 0.5 a, a]=[1,0.5,1,0.5,1] a$, so $a=1 / 4$.

Quiz 1: G
15. Which is $L[Y \mid X]$? Blue, red or green?

(X, Y) picked uniformly

Answer: Blue.

Cannot be red (not a straight line).
Cannot be green: X and Y are clearly positively correlated.

Quiz 1: G

12. Write the first step equations for calculating the mean time from 1 to 4 .
$\beta(1)=1+0.5 \beta(2)+0.5 \beta(3)$
$\beta(2)=1$
$\beta(3)=1+\beta(5)$
$\beta(5)=1+\beta(1)$.
13. Solve these equations.
$\beta(1)=1+0.5 \times 1+0.5 \times(1+(1+\beta(1)))$

$$
=2.5+0.5 \beta(1)
$$

Hence, $\beta(1)=5$.
Quiz 2: PG

1. Find (x, y) so that A and B are independent. We need

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]
$$

That is,

$$
0.2=(y+0.2) \times 0.5=0.5 y+0.1
$$

Hence,

$$
y=0.2 \text { and } x=0.3
$$

2. Find the value of x that maximizes $\operatorname{Pr}[B \mid A]$ Obviously, it is $x=0.5$.

Quiz 1: G
14. Which is $E[Y \mid X]$? Blue, red or green?

(X, Y) picked uniformly
Answer: Red.
Given $X=x, Y=U[a(x), b(x)]$. Thus, $E[Y \mid X=x]=\frac{a(x)+b(x)}{2}$.

Quiz 2: PG

3. Find α so that X and Y are independent. We need

$$
\operatorname{Pr}[X=0, Y=0]=\operatorname{Pr}[X=0] \operatorname{Pr}[Y=0]
$$

That is,
$0.1=(0.1+\alpha) \times(0.1+0.2)=0.03+0.3 \alpha$ Hence,

$$
\alpha=0.233
$$

Quiz 2: PG

4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student solves each question correctly w.p. 0.8 whereas a good student does w.p. 0.6. One student got right 70% of the 10 questions on Midterm 1 and 70% of the 10 questions on Midterm 2. What is the expected score of the student on the final?

p $:=\operatorname{Pr}[$ great|scores $]=\quad 0.3\left({ }_{14}^{20}\right) 0.8^{14} 0.2$
$0.2^{6}+0.7\left({ }_{14}^{20}\right) 0.6^{14} 0.4^{6}$

$$
\text { (0.3) } 0.8^{14} 0.2^{6}
$$

$=\frac{}{(0.3) 0.8^{14} 0.2^{6}+(0.7) 0.6^{14} 0.4^{6}} \approx 0.27$
Expected score $=p 80 \%+(1-p) 60 \% \approx 65 \%$.

Quiz 2: PG

7. Let X, Y, Z be i.i.d. Expo(1). Find $L[X \mid X+2 Y+3 Z]$.

Let $V=X+2 Y+3 Z$. One finds
$L[X \mid V]=E[X]+\frac{\operatorname{cov}(X, V)}{\operatorname{var}(V)}(V-E[V])$
$E[X]=1, E[V]=6$
$\operatorname{cov}(X, V)=\operatorname{var}(X)=1$

$$
\operatorname{var}(V)=1+4+9=14 .
$$

Hence

$$
L[X \mid V]=1+\frac{1}{14}(V-6)
$$

8. Let X, Y, Z be i.i.d. $\operatorname{Expo}(1)$. Calculate $E[X+Z \mid X+Y]$.

$$
E[X+Z \mid X+Y]=E[X \mid X+Y]+E[Z]
$$

$$
=\frac{1}{2}(X+Y)+1
$$

9. Let X, Y, Z be i.i.d. Expo(1). Calculate $L[X+Z \mid X+Y]$

$$
L[X+Z \mid X+Y]=\frac{1}{2}(X+Y)+1
$$

Quiz 2: PG

5. You roll a balanced six-sided die 20 times. Use CLT to upper-bound the probability that the total number of dots exceeds 85

Then

$$
\frac{x-70}{\sigma \sqrt{20}} \approx \mathscr{N}(0,1)
$$

where

$$
\sigma^{2}=\operatorname{var}\left(X_{1}\right)=(1 / 6) \sum_{m=1}^{6} m^{2}-(3.5)^{2} \approx 2.9=1.7^{2}
$$

Now

$$
\begin{aligned}
\operatorname{Pr}[X>85] & =\operatorname{Pr}[X-70>15] \\
& =\operatorname{Pr}\left[\frac{X-70}{1.7 \times 4.5}>\frac{15}{1.7 \times 4.5}\right] \\
& =\operatorname{Pr}\left[\frac{X-70}{1.7 \times 4.5}>2\right] \approx 2.5 \% .
\end{aligned}
$$

Q2: PG
10. You roll a balanced die.

You start with $\$ 1.00$
Every time you get a 6, your fortune is multiplied by 10 .
Every time you do not get a 6 , your fortune is divided by 2 .
Let X_{n} be your fortune at the start of step n,
Calculate $E\left[X_{n}\right]$.

We have $X_{1}=1$. Also,

$$
\begin{aligned}
E\left[X_{n+1} \mid X_{n}\right] & =X_{n} \times\left[10 \frac{1}{6}+0.5 \times \frac{5}{6}\right] \\
& =\rho X_{n}, \rho=10 \frac{1}{6}+0.5 \times \frac{5}{6} \approx 2.1 .
\end{aligned}
$$

Hence,
$E\left[X_{n+1}\right]=\rho E\left[X_{n}\right], n \geq 1$.
Thus,

$$
E\left[X_{n}\right]=\rho^{n-1}, n \geq 1 .
$$

Quiz 2: PG
6. You roll a balanced six-sided die 20 times. Use Chebyshev to upper-bound the probability that the total number of dots exceeds 85 .
et $X=X_{1}+\cdots+X_{20}$ be the total number of dots. Then

$$
\begin{aligned}
\operatorname{Pr}[X>85] & =\operatorname{Pr}[X-70>15] \leq \operatorname{Pr}[|X-70|>15] \\
& \leq \frac{\operatorname{var}(X)}{15^{2}} .
\end{aligned}
$$

Now,

$$
\operatorname{var}(X)=20 \operatorname{var}\left(X_{1}\right)=20 \times 2.9=58
$$

Hence,

$$
\operatorname{Pr}[X>85] \leq \frac{58}{15^{2}} \approx 0.26 .
$$

Quiz 3: R

1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8. All the bulbs in one batch are equally likely to be good or defective. You test one bulb and note that it burns out after 0.6 year. (a) What is the probability you got a batch of good bulbs? (b) What is the expected lifespan of another bulb in that batch?
Hint: If $X=\operatorname{Expo}(\lambda), f_{X}(x)=\lambda e^{-\lambda x_{1}}\{x>0\}, E[X]=1 / \lambda$.

Let X be the lifespan of a bulb, G the event that it is good, and B the event hat it is bad
(a) $p:=\operatorname{Pr}[G \mid X \in(0.6,0.6+\delta)]$
$=\frac{0.5 \operatorname{Pr}[X \in(0.6,0.6+\delta) \mid G]}{0.5 \operatorname{Pr}[X \in(0.6,0.6+\delta) \mid G]+0.5 \operatorname{Pr}[X \in(0.6,0.6+\delta)[D]}$

$$
e^{-0.6} \delta
$$

$$
=\frac{e^{-0.6} \delta}{e^{-0.6} \delta+(0.8)^{-1} e^{-(0.8)^{-1} 0.6} \delta} \approx 0.488
$$

(b) $E[$ lifespan of other bulb $]=p \times 1+(1-p) \times 0.8 \approx 0.9$.

Quiz 3: R

2. In the figure, 1, 2, , , 4 are links 2. In the figure,,$\frac{2,3,4 \text { are tinks }}{\text { that fail after i.i.d. times that }}$ are $U[0,1]$.
Find the average time until A and B are disconnected.
Let X_{k} be the lifespan of link k, for $k=1, \ldots, 4$.
We are looking for $E[Z]$ where $Z=\max \left\{Y_{1}, Y_{2}\right\}$ with $Y_{1}=\min \left\{X_{1}, X_{2}\right\}$ and $Y_{2}=\min \left\{X_{3}, X_{4}\right\}$.

$$
\begin{aligned}
\operatorname{Pr}\left[Y_{1}>t\right] & =\operatorname{Pr}\left[X_{1}>t\right] \operatorname{Pr}\left[X_{2}>t\right]=(1-t)^{2} \\
\operatorname{Pr}[Z \leq t] & =\operatorname{Pr}\left[Y_{1} \leq t\right] \operatorname{Pr}\left[Y_{2} \leq t\right]=\left(1-(1-t)^{2}\right)^{2} \\
& =\left(2 t-t^{2}\right)^{2}=4 t^{2}-4 t^{3}+t^{4} \\
f_{z}(t) & =8 t-12 t^{2}+4 t^{3} \\
E[Z] & =\int_{0}^{1} t f_{Z}(t) d t=8 \frac{1}{3}-12 \frac{1}{4}+4 \frac{1}{5} \\
& \approx 0.4667 .
\end{aligned}
$$

Quiz 3: R

7. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X=1$ if ball 1 is red and $X=-1$ otherwise. Define Y likewise for ball 2 Calculate $E[Y \mid X]$.
Since X takes only two values, any $g(X)$ is linear in X. Hence, $E[Y \mid X]=L[Y \mid X]$.

Alternatively, Let $\alpha=\operatorname{Pr}[X=Y]=(n-1)(2 n-1)$.Then,

$$
\begin{aligned}
& E[Y \mid X=1]=\alpha-(1-\alpha)=2 \alpha-1, \\
& E[Y \mid X=-1]=-\alpha+(1-\alpha)=1-2 \alpha .
\end{aligned}
$$

Thus,

$$
E[Y \mid X]=(2 \alpha-1) X=-\frac{1}{2 n-1} X
$$

Quiz 3: R

3. We are given π_{0}. Find $\lim _{n \rightarrow \infty} \pi_{n}$.

With probability $\alpha:=0.2 \pi_{0}(1)+\pi_{0}(2)+\pi_{0}(3)$, the MC ends up in $\{2,3\}$. With probability $1-\alpha$, it ends up in state 4 .
If it is in $\{2,3\}$, the probability that it is in state 2 converges to

$$
\frac{0.2}{0.2+0.6}=0.25 \text {. }
$$

Hence, the limiting distribution is
$[0,0.25 \alpha, 0.75 \alpha, 1-\alpha]$.

Common Mistakes

- $\Omega=\{1,2,3\}$. Define X, Y with $\operatorname{cov}(X, Y)=0$ and X, Y not independent.

Let $X=0, Y=1$. No: They are independent.
Let
$X(1)=-1, X(2)=0, X(1)=1, Y(1)=0, Y(2)=1, Y(3)=0$.

- $3 \times 3.5=12.5$. No.
- $E\left[X^{2}\right]=E[X]^{2}$. No.
- $X=B(n, p) \Longrightarrow \operatorname{var}(X)=n^{2} p(1-p)$. No.
- $E[X]=E[X \mid A]+E[X \mid \bar{A}]$. No.
- $\sum_{n=0}^{\infty} a^{n}=1 / a$. No.
- CS70 is difficult. No.
- I will do poorly on the final. No.
- Rao is bad at copying. Probably!.

Quiz 3: R

4. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X=1$ if ball 1 is red and $X=-1$ otherwise. Define Y likewise for ball 2 .
\rightarrow Are X and Y positively, negatively, or un- correlated?
Clearly, negatively.
5. Calculate $\operatorname{cov}(X, Y)$
$\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]$
$E[X]=E[Y]$, by symmetry
$E[X]=0$
$E[X Y]=\operatorname{Pr}[X=Y]-\operatorname{Pr}[X \neq Y]=2 \operatorname{Pr}[X=Y]-1$
$\operatorname{Pr}[X=Y]=(n-1) /(2 n-1)$
E.g., if $X=+1=$ red, then Y is red w.p. $(n-1) /(2 n-1)$
$E[X Y]=2(n-1) /(2 n-1)-1=-1 /(2 n-1)=\operatorname{cov}(X, Y)$.
6. What is $L[Y \mid X]$? $L[Y \mid X]=-\frac{1}{2 n-1} X$. Indeed, $\operatorname{var}(X)=1$, obviously!
