Probability!

Probability! Confuses us.

Probability! Confuses us. But really neat.

Probability! Confuses us. But really neat. At times,

Probability! Confuses us. But really neat. At times, continuous.

Probability! Confuses us. But really neat. At times, continuous. At others, discrete. Sample Space: Ω , $Pr[\omega]$.

Probability! Confuses us. But really neat. At times, continuous. At others, discrete. Sample Space: Ω , $Pr[\omega]$.

Event: $Pr[A] = \sum_{\omega \in A} Pr[\omega]$

 $\sum_{\omega} Pr[\omega] = 1$.

Probability!

Confuses us. But really neat.

At times, continuous. At others, discrete.

Sample Space: Ω , $Pr[\omega]$.

Event: $Pr[A] = \sum_{\omega \in A} Pr[\omega]$

 $\sum_{\omega} Pr[\omega] = 1$.

Random Variable: X

Event: A = [a, b], $Pr[X \in A]$,

```
Probability! Confuses us. But really neat. At times, continuous. At others, discrete. Sample Space:\Omega, Pr[\omega]. Ra Event: Pr[A] = \sum_{\omega \in A} Pr[\omega] \sum_{\omega} Pr[\omega] = 1. C Random variables: X(\omega). Distribution: Pr[X = x] \sum_{x} Pr[X = x] = 1.
```

```
Random Variable: X

Event: A = [a, b], Pr[X \in A],

CDF: F(x) = Pr[X \le x].

PDF: f(x) = \frac{dF(x)}{dx}.

\int_{-\infty}^{\infty} f(x) = 1.
```

```
Probability! Confuses us. But really neat. At times, continuous. At others, discrete. Sample Space:\Omega, Pr[\omega]. Ra Event: Pr[A] = \sum_{\omega \in A} Pr[\omega] \sum_{\omega} Pr[\omega] = 1. C Random variables: X(\omega). Distribution: Pr[X = x] \sum_{x} Pr[X = x] = 1.
```

```
Random Variable: X

Event: A = [a, b], Pr[X \in A],

CDF: F(x) = Pr[X \le x].

PDF: f(x) = \frac{dF(x)}{dx}.

\int_{-\infty}^{\infty} f(x) = 1.
```

Probability!

Confuses us. But really neat.

At times, continuous. At others, discrete.

Sample Space: Ω , $Pr[\omega]$.

Event: $Pr[A] = \sum_{\omega \in A} Pr[\omega]$

 $\sum_{\underline{\omega}} Pr[\underline{\omega}] = 1.$

Random variables: $X(\omega)$.

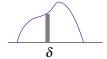
Distribution: Pr[X = x]

$$\sum_{X} Pr[X = X] = 1.$$

Continuous as Discrete.

$$Pr[X \in [x, x + \delta]] \approx f(x)\delta$$

Random Variable: XEvent: A = [a, b], $Pr[X \in A]$, CDF: $F(x) = Pr[X \le x]$. PDF: $f(x) = \frac{dF(x)}{dx}$. $\int_{-\infty}^{\infty} f(x) = 1$.



Conditional Probabity.

Conditional Probabity.

Events: A, B

Conditional Probabity.

Events: A, B

Discrete: "Heads", "Tails", X = 1, Y = 5.

Conditional Probabity.

Events: A, B

Discrete: "Heads", "Tails", X = 1, Y = 5.

Continuous: *X* in [.2, .3]. $X \in [.2, .3]$ or $X \in [.4, .6]$.

Conditional Probabity.

Events: A, B

Discrete: "Heads", "Tails", X = 1, Y = 5.

Continuous: *X* in [.2, .3]. $X \in [.2, .3]$ or $X \in [.4, .6]$.

Conditional Probability: $Pr[A|B] = \frac{Pr[A] \cap Pr[B]}{Pr[B]}$

Conditional Probabity.

Events: A, B

Discrete: "Heads", "Tails", X = 1, Y = 5.

Continuous: *X* in [.2, .3]. $X \in [.2, .3]$ or $X \in [.4, .6]$.

Conditional Probability: $Pr[A|B] = \frac{Pr[A] \cap Pr[B]}{Pr[B]}$

Pr["Second Heads"|"First Heads"], $Pr[X \in [.2..3] | X \in [.2..3]$ or $X \in [.5..3]$

 $Pr[X \in [.2,.3] | X \in [.2,.3] \text{ or } X \in [.5,.6]].$

Conditional Probabity.

Events: A, B

Discrete: "Heads", "Tails", X = 1, Y = 5.

Continuous: *X* in [.2, .3]. $X \in [.2, .3]$ or $X \in [.4, .6]$.

Conditional Probability: $Pr[A|B] = \frac{Pr[A] \cap Pr[B]}{Pr[B]}$

Pr["Second Heads"|"First Heads"],

 $Pr[X \in [.2,.3] | X \in [.2,.3] \text{ or } X \in [.5,.6]].$

Total Probability Rule: $Pr[A] = Pr[A \cap B] + Pr[A \cap \overline{B}]$

Conditional Probabity.

Events: A, B

Discrete: "Heads", "Tails", X = 1, Y = 5.

Continuous: *X* in [.2, .3]. $X \in [.2, .3]$ or $X \in [.4, .6]$.

Conditional Probability: $Pr[A|B] = \frac{Pr[A] \cap Pr[B]}{Pr[B]}$

Pr["Second Heads"]"First Heads"], $Pr[X \in [.2,.3] | X \in [.2,.3] \text{ or } X \in [.5,.6]].$

Total Probability Rule: $Pr[A] = Pr[A \cap B] + Pr[A \cap \overline{B}]$ Pr["Second Heads"] = Pr[HH] + Pr[HT]

Conditional Probabity.

Events: A, B

Discrete: "Heads", "Tails", X = 1, Y = 5.

Continuous: *X* in [.2, .3]. $X \in [.2, .3]$ or $X \in [.4, .6]$.

Conditional Probability: $Pr[A|B] = \frac{Pr[A] \cap Pr[B]}{Pr[B]}$

Pr["Second Heads"]"First Heads"], $Pr[X \in [.2,.3] | X \in [.2,.3] \text{ or } X \in [.5,.6]].$

Total Probability Rule: $Pr[A] = Pr[A \cap B] + Pr[A \cap \overline{B}]$ Pr["Second Heads"] = Pr[HH] + Pr[HT]B is First coin heads.

Conditional Probabity.

Events: A, B

Discrete: "Heads", "Tails", X = 1, Y = 5.

Continuous: *X* in [.2, .3]. $X \in [.2, .3]$ or $X \in [.4, .6]$.

Conditional Probability: $Pr[A|B] = \frac{Pr[A] \cap Pr[B]}{Pr[B]}$

Pr["Second Heads"|"First Heads"],

 $Pr[X \in [.2,.3] | X \in [.2,.3] \text{ or } X \in [.5,.6]].$

Total Probability Rule: $Pr[A] = Pr[A \cap B] + Pr[A \cap \overline{B}]$ Pr["Second Heads"] = Pr[HH] + Pr[HT]B is First coin heads.

 $Pr[X \in [.45, .55]] = Pr[X \in [.45, .50]] + Pr[X \in (.50, .55]]$

Conditional Probabity.

Events: A, B

Discrete: "Heads", "Tails", X = 1, Y = 5.

Continuous: *X* in [.2, .3]. $X \in [.2, .3]$ or $X \in [.4, .6]$.

Conditional Probability: $Pr[A|B] = \frac{Pr[A] \cap Pr[B]}{Pr[B]}$

Pr["Second Heads"|"First Heads"],

 $Pr[X \in [.2,.3] | X \in [.2,.3] \text{ or } X \in [.5,.6]].$

Total Probability Rule: $Pr[A] = Pr[A \cap B] + Pr[A \cap \overline{B}]$ Pr["Second Heads"] = Pr[HH] + Pr[HT]B is First coin heads.

 $Pr[X \in [.45, .55]] = Pr[X \in [.45, .50]] + Pr[X \in (.50, .55]]$ B is $X \in [0, .5]$

Probability Rules are all good.

Conditional Probabity.

Events: A, B

Discrete: "Heads", "Tails", X = 1, Y = 5.

Continuous: *X* in [.2, .3]. $X \in [.2, .3]$ or $X \in [.4, .6]$.

Conditional Probability: $Pr[A|B] = \frac{Pr[A] \cap Pr[B]}{Pr[B]}$

Pr["Second Heads"|"First Heads"],

 $Pr[X \in [.2,.3] | X \in [.2,.3] \text{ or } X \in [.5,.6]].$

Total Probability Rule: $Pr[A] = Pr[A \cap B] + Pr[A \cap \overline{B}]$ Pr["Second Heads"] = Pr[HH] + Pr[HT]B is First coin heads.

 $Pr[X \in [.45, .55]] = Pr[X \in [.45, .50]] + Pr[X \in (.50, .55]]$ B is $X \in [0, .5]$

Probability Rules are all good.

Conditional Probabity.

Events: A, B

Discrete: "Heads", "Tails", X = 1, Y = 5.

Continuous: *X* in [.2, .3]. $X \in [.2, .3]$ or $X \in [.4, .6]$.

Conditional Probability: $Pr[A|B] = \frac{Pr[A] \cap Pr[B]}{Pr[B]}$

Pr["Second Heads"|"First Heads"],

 $Pr[X \in [.2,.3] | X \in [.2,.3] \text{ or } X \in [.5,.6]].$

Total Probability Rule: $Pr[A] = Pr[A \cap B] + Pr[A \cap \overline{B}]$ Pr["Second Heads"] = Pr[HH] + Pr[HT]

B is First coin heads.

 $Pr[X \in [.45, .55]] = Pr[X \in [.45, .50]] + Pr[X \in (.50, .55]]$ $B \text{ is } X \in [0, .5]$

Product Rule: $Pr[A \cap B] = Pr[A|B]Pr[B]$. Bayes Rule: Pr[A|B] = Pr[B|A]Pr[A]/Pr[B].

Probability Rules are all good.

Conditional Probabity.

Events: A, B

Discrete: "Heads", "Tails", X = 1, Y = 5.

Continuous: *X* in [.2, .3]. $X \in [.2, .3]$ or $X \in [.4, .6]$.

Conditional Probability: $Pr[A|B] = \frac{Pr[A] \cap Pr[B]}{Pr[B]}$

Pr["Second Heads"]"First Heads"], $Pr[X \in [.2,.3] | X \in [.2,.3] \text{ or } X \in [.5,.6]].$

Total Probability Rule: $Pr[A] = Pr[A \cap B] + Pr[A \cap \overline{B}]$

Pr["Second Heads"] = Pr[HH] + Pr[HT]B is First coin heads.

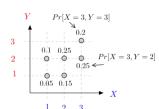
 $Pr[X \in [.45, .55]] = Pr[X \in [.45, .50]] + Pr[X \in (.50, .55]]$

B is $X \in [0,.5]$ Product Rule: $Pr[A \cap B] = Pr[A|B]Pr[B]$.

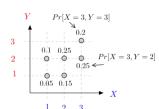
Bayes Rule: Pr[A|B] = Pr[B|A]Pr[A]/Pr[B].

All work for continuous with intervals as events.

Y/X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

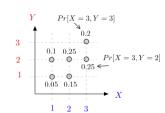


Y/X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	



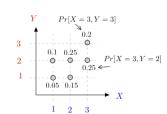
Y/X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01 .06	.03	.02	.20 .26
3	.21	.06	.03 .03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution?

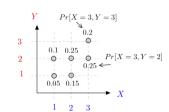


Y/X	1	2	4	8	
1	.03	.05	.1		.20
2	.2	.01	.03	.02	.20 .26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one.

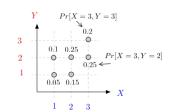


Y/X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

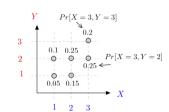


Marginal Distribution? Here is one. And here is another.

Y/X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01 .06	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

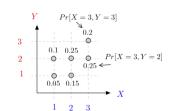


Y/X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.01 .06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	



$$E[Y|X]$$
?

Y/X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01 .06	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	



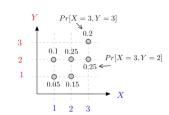
Marginal Distribution? Here is one. And here is another.

The distribution of one of the variables.

$$E[Y|X]$$
?

$$E[Y|X=1] = (.03 \times 1 + .2 \times 2 + .21 \times 3 + .02 \times 5)/.44 = \frac{1.16}{.44}.$$

Y/X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.02 .01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	



Marginal Distribution? Here is one. And here is another.

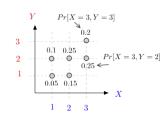
The distribution of one of the variables.

$$E[Y|X]$$
?

$$E[Y|X=1] = (.03 \times 1 + .2 \times 2 + .21 \times 3 + .02 \times 5)/.44 = \frac{1.16}{.44}.$$

 $E[Y|X=2] = (.05 \times 1 + .01 \times 2 + .06 \times 3 + .2 \times 5)/.32 = \frac{1.25}{.22}.$

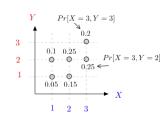
Y/X	1	2	4	8	
1	.03		.1		.20 .26
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	



$$E[Y|X]$$
?

$$\begin{split} E[Y|X=1] &= (.03\times1 + .2\times2 + .21\times3 + .02\times5)/.44 = \frac{1.16}{.44}.\\ E[Y|X=2] &= (.05\times1 + .01\times2 + .06\times3 + .2\times5)/.32 = \frac{1.25}{.32}.\\ E[Y|X=4] &= (.1\times1 + .03\times2 + .03\times3 + .02\times5)/.18 = \frac{.35}{.18}. \end{split}$$

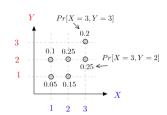
Y/X	1	2	4	8	
1	.03	.05	.1	.02	.20 .26
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.02 .01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	



$$E[Y|X]$$
?

$$\begin{split} E[Y|X=1] &= (.03\times1 + .2\times2 + .21\times3 + .02\times5)/.44 = \frac{1.16}{.44}.\\ E[Y|X=2] &= (.05\times1 + .01\times2 + .06\times3 + .2\times5)/.32 = \frac{1.25}{.32}.\\ E[Y|X=4] &= (.1\times1 + .03\times2 + .03\times3 + .02\times5)/.18 = \frac{.35}{.18}.\\ E[Y|X=8] &= (.02\times1 + .02\times2 + .01\times3 + .01\times5)/.06 = \frac{.10}{.06}. \end{split}$$

Y/X	1	2	4	8	
1	.03	.05	.1	.02	.20 .26
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.02 .01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	



$$E[Y|X]?$$

$$E[Y|X = 1] = (.03 \times 1 + .2 \times 2 + .21 \times 3 + .02 \times 5)/.44 = \frac{1.16}{.44}.$$

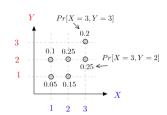
$$E[Y|X = 2] = (.05 \times 1 + .01 \times 2 + .06 \times 3 + .2 \times 5)/.32 = \frac{1.25}{.32}.$$

$$E[Y|X = 4] = (.1 \times 1 + .03 \times 2 + .03 \times 3 + .02 \times 5)/.18 = \frac{.35}{.18}.$$

$$E[Y|X = 8] = (.02 \times 1 + .02 \times 2 + .01 \times 3 + .01 \times 5)/.06 = \frac{.10}{.06}.$$

$$E[Y]$$

Y/X	1	2	4	8	
1	.03		.1		.20 .26
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	



$$E[Y|X]?$$

$$E[Y|X = 1] = (.03 \times 1 + .2 \times 2 + .21 \times 3 + .02 \times 5)/.44 = \frac{1.16}{.44}.$$

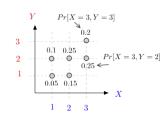
$$E[Y|X = 2] = (.05 \times 1 + .01 \times 2 + .06 \times 3 + .2 \times 5)/.32 = \frac{1.25}{.32}.$$

$$E[Y|X = 4] = (.1 \times 1 + .03 \times 2 + .03 \times 3 + .02 \times 5)/.18 = \frac{.35}{.18}.$$

$$E[Y|X = 8] = (.02 \times 1 + .02 \times 2 + .01 \times 3 + .01 \times 5)/.06 = \frac{.10}{.06}.$$

$$E[Y] = E[E[Y|X]] =$$

Y/X	1	2	4	8	
1	.03		.1		.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	



$$E[Y|X]$$
?

$$E[Y|X=1] = (.03 \times 1 + .2 \times 2 + .21 \times 3 + .02 \times 5)/.44 = \frac{1.16}{.44}.$$

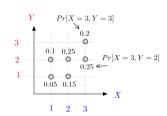
$$E[Y|X=2] = (.05 \times 1 + .01 \times 2 + .06 \times 3 + .2 \times 5)/.32 = \frac{1.25}{.32}.$$

$$E[Y|X=4] = (.1 \times 1 + .03 \times 2 + .03 \times 3 + .02 \times 5)/.18 = \frac{.35}{.18}.$$

$$E[Y|X=8] = (.02 \times 1 + .02 \times 2 + .01 \times 3 + .01 \times 5)/.06 = \frac{.10}{.06}.$$

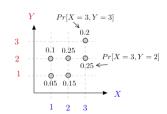
$$E[Y] = E[E[Y|X]] = E[Y|X=1]Pr[X=1]$$

Y/X	1	2	4	8	
1	.03		.1		.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	



$$\begin{split} E[Y|X]? \\ E[Y|X=1] &= (.03 \times 1 + .2 \times 2 + .21 \times 3 + .02 \times 5) / .44 = \frac{1.16}{.44}. \\ E[Y|X=2] &= (.05 \times 1 + .01 \times 2 + .06 \times 3 + .2 \times 5) / .32 = \frac{1.25}{.32}. \\ E[Y|X=4] &= (.1 \times 1 + .03 \times 2 + .03 \times 3 + .02 \times 5) / .18 = \frac{.35}{.18}. \\ E[Y|X=8] &= (.02 \times 1 + .02 \times 2 + .01 \times 3 + .01 \times 5) / .06 = \frac{.10}{.06}. \\ E[Y] &= E[E[Y|X]] &= E[Y|X=1] Pr[X=1] + E[Y|X=2] Pr[X=2]. \end{split}$$

Y/X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3		.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	



$$E[Y|X]$$
?

$$E[Y|X=1] = (.03 \times 1 + .2 \times 2 + .21 \times 3 + .02 \times 5)/.44 = \frac{1.16}{.44}.$$

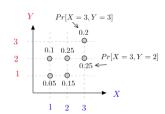
$$E[Y|X=2] = (.05 \times 1 + .01 \times 2 + .06 \times 3 + .2 \times 5)/.32 = \frac{1.25}{.32}.$$

$$E[Y|X=4] = (.1 \times 1 + .03 \times 2 + .03 \times 3 + .02 \times 5)/.18 = \frac{.35}{.18}.$$

$$E[Y|X=8] = (.02 \times 1 + .02 \times 2 + .01 \times 3 + .01 \times 5)/.06 = \frac{.10}{.06}.$$

$$E[Y] = E[E[Y|X]] = E[Y|X=1]Pr[X=1] + E[Y|X=2]Pr[X=2] + \cdots$$

Y/X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.02 .01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	



$$E[Y|X]$$
?

$$E[Y|X=1] = (.03 \times 1 + .2 \times 2 + .21 \times 3 + .02 \times 5)/.44 = \frac{1.16}{.44}.$$

$$E[Y|X=2] = (.05 \times 1 + .01 \times 2 + .06 \times 3 + .2 \times 5)/.32 = \frac{1.25}{.32}.$$

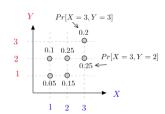
$$E[Y|X=4] = (.1 \times 1 + .03 \times 2 + .03 \times 3 + .02 \times 5)/.18 = \frac{.35}{.18}.$$

$$E[Y|X=8] = (.02 \times 1 + .02 \times 2 + .01 \times 3 + .01 \times 5)/.06 = \frac{.10}{.06}.$$

$$E[Y] = E[E[Y|X]] = E[Y|X=1]Pr[X=1] + E[Y|X=2]Pr[X=2] + \cdots$$

$$E[Y] = (1.16 + 1.25 + .35 + .10) = 2.86.$$

Y/X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.02 .01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	



$$E[Y|X]$$
?

$$E[Y|X=1] = (.03 \times 1 + .2 \times 2 + .21 \times 3 + .02 \times 5)/.44 = \frac{1.16}{.44}.$$

$$E[Y|X=2] = (.05 \times 1 + .01 \times 2 + .06 \times 3 + .2 \times 5)/.32 = \frac{1.25}{.32}.$$

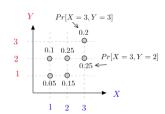
$$E[Y|X=4] = (.1 \times 1 + .03 \times 2 + .03 \times 3 + .02 \times 5)/.18 = \frac{.35}{.18}.$$

$$E[Y|X=8] = (.02 \times 1 + .02 \times 2 + .01 \times 3 + .01 \times 5)/.06 = \frac{.10}{.06}.$$

$$E[Y] = E[E[Y|X]] = E[Y|X=1]Pr[X=1] + E[Y|X=2]Pr[X=2] + \cdots$$

$$E[Y] = (1.16 + 1.25 + .35 + .10) = 2.86.$$

Y/X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.02 .01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	



$$E[Y|X]$$
?

$$E[Y|X=1] = (.03 \times 1 + .2 \times 2 + .21 \times 3 + .02 \times 5)/.44 = \frac{1.16}{.44}.$$

$$E[Y|X=2] = (.05 \times 1 + .01 \times 2 + .06 \times 3 + .2 \times 5)/.32 = \frac{1.25}{.32}.$$

$$E[Y|X=4] = (.1 \times 1 + .03 \times 2 + .03 \times 3 + .02 \times 5)/.18 = \frac{.35}{.18}.$$

$$E[Y|X=8] = (.02 \times 1 + .02 \times 2 + .01 \times 3 + .01 \times 5)/.06 = \frac{.10}{.06}.$$

$$E[Y] = E[E[Y|X]] = E[Y|X=1]Pr[X=1] + E[Y|X=2]Pr[X=2] + \cdots$$

$$E[Y] = (1.16 + 1.25 + .35 + .10) = 2.86.$$

One defines a pair (X, Y) of continuous RVs by specifying

One defines a pair (X,Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x,y\in\Re$

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x,y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example:

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$.

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} 1\{(x,y) \in A\}$$

where |A| is the area of A.

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation.

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} 1\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation. Think of (X,Y) as being discrete on a grid with mesh size ε

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} 1\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $Pr[X = m\varepsilon, Y = n\varepsilon] = f_{X,Y}(m\varepsilon, n\varepsilon)\varepsilon^2$.

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $Pr[X = m\varepsilon, Y = n\varepsilon] = f_{X,Y}(m\varepsilon, n\varepsilon)\varepsilon^2$.

Extension:

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

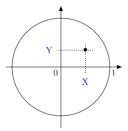
$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

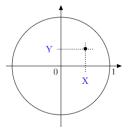
where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $Pr[X = m\varepsilon, Y = n\varepsilon] = f_{X,Y}(m\varepsilon, n\varepsilon)\varepsilon^2$.

Extension: $\mathbf{X} = (X_1, \dots, X_n)$ with $f_{\mathbf{X}}(\mathbf{x})$.

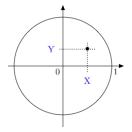
Example of Continuous (X, Y)Pick a point (X, Y) uniformly in the unit circle.





$$\implies f_{X,Y}(x,y) = \tfrac{1}{\pi} \mathbf{1} \{ x^2 + y^2 \le 1 \}.$$

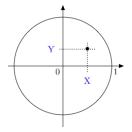
Pick a point (X, Y) uniformly in the unit circle.



$$\implies f_{X,Y}(x,y) = \tfrac{1}{\pi} \mathbf{1} \{ x^2 + y^2 \le 1 \}.$$

$$Pr[X > 0, Y > 0] =$$

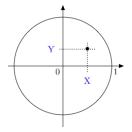
Pick a point (X, Y) uniformly in the unit circle.



$$\implies f_{X,Y}(x,y) = \tfrac{1}{\pi} \mathbf{1} \{ x^2 + y^2 \le 1 \}.$$

$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

Pick a point (X, Y) uniformly in the unit circle.

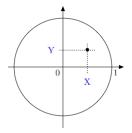


$$\implies f_{X,Y}(x,y) = \frac{1}{\pi} 1\{x^2 + y^2 \le 1\}.$$

$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

 $Pr[X < 0, Y > 0] =$

Pick a point (X, Y) uniformly in the unit circle.

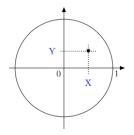


$$\implies f_{X,Y}(x,y) = \frac{1}{\pi} 1\{x^2 + y^2 \le 1\}.$$

$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

 $Pr[X < 0, Y > 0] = \frac{1}{4}$

Pick a point (X, Y) uniformly in the unit circle.

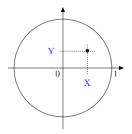


$$\implies f_{X,Y}(x,y) = \frac{1}{\pi} 1\{x^2 + y^2 \le 1\}.$$

$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

 $Pr[X < 0, Y > 0] = \frac{1}{4}$
 $Pr[X^2 + Y^2 \le r^2] =$

Pick a point (X, Y) uniformly in the unit circle.

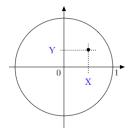


$$\implies f_{X,Y}(x,y) = \frac{1}{\pi} 1\{x^2 + y^2 \le 1\}.$$

$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

 $Pr[X < 0, Y > 0] = \frac{1}{4}$
 $Pr[X^2 + Y^2 \le r^2] = r^2$

Pick a point (X, Y) uniformly in the unit circle.



$$\implies f_{X,Y}(x,y) = \frac{1}{\pi} 1\{x^2 + y^2 \le 1\}.$$

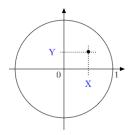
$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

$$Pr[X < 0, Y > 0] = \frac{1}{4}$$

$$Pr[X^{2} + Y^{2} \le r^{2}] = r^{2}$$

$$Pr[X > Y] =$$

Pick a point (X, Y) uniformly in the unit circle.



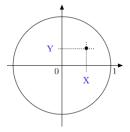
$$\implies f_{X,Y}(x,y) = \frac{1}{\pi} 1\{x^2 + y^2 \le 1\}.$$

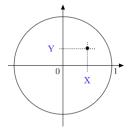
$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

$$Pr[X < 0, Y > 0] = \frac{1}{4}$$

$$Pr[X^2 + Y^2 \le r^2] = r^2$$

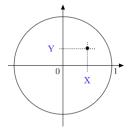
$$Pr[X > Y] = \frac{1}{2}$$





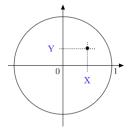
$$f_{X,Y}(x,y) = \frac{1}{\pi} \mathbf{1} \{ x^2 + y^2 \le 1 \}.$$

Pick a point (X, Y) uniformly in the unit circle.



$$f_{X,Y}(x,y) = \frac{1}{\pi} \mathbf{1} \{ x^2 + y^2 \le 1 \}.$$

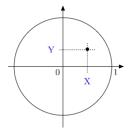
Pick a point (X, Y) uniformly in the unit circle.



$$f_{X,Y}(x,y) = \frac{1}{\pi} \mathbf{1} \{ x^2 + y^2 \le 1 \}.$$

$$f_X(x) =$$

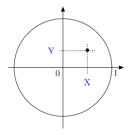
Pick a point (X, Y) uniformly in the unit circle.



$$f_{X,Y}(x,y) = \frac{1}{\pi} \mathbf{1} \{ x^2 + y^2 \le 1 \}.$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

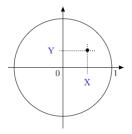
Pick a point (X, Y) uniformly in the unit circle.



$$f_{X,Y}(x,y) = \frac{1}{\pi} \mathbf{1} \{ x^2 + y^2 \le 1 \}.$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \frac{2}{\pi} \sqrt{1 - x^2}$$

Pick a point (X, Y) uniformly in the unit circle.

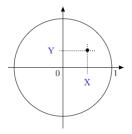


$$f_{X,Y}(x,y) = \frac{1}{\pi} \mathbf{1} \{ x^2 + y^2 \le 1 \}.$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \frac{2}{\pi} \sqrt{1 - x^2}$$

 $f_Y(y) =$

Pick a point (X, Y) uniformly in the unit circle.

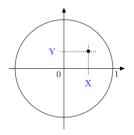


$$f_{X,Y}(x,y) = \frac{1}{\pi} \mathbf{1} \{ x^2 + y^2 \le 1 \}.$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \frac{2}{\pi} \sqrt{1 - x^2}$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

Pick a point (X, Y) uniformly in the unit circle.



$$f_{X,Y}(x,y) = \frac{1}{\pi} \mathbf{1} \{ x^2 + y^2 \le 1 \}.$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \frac{2}{\pi} \sqrt{1 - x^2}$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx = \frac{2}{\pi} \sqrt{1 - y^2}$$

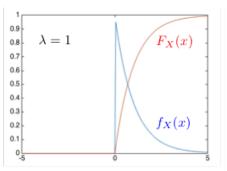
The exponential distribution with parameter $\lambda > 0$ is defined by

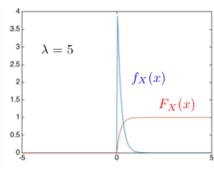
The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$

The exponential distribution with parameter $\lambda > 0$ is defined by

$$f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$$

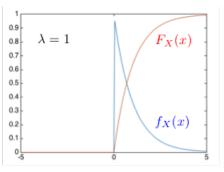
$$F_X(x) = \left\{ egin{array}{ll} 0, & ext{if } x < 0 \ 1 - e^{-\lambda x}, & ext{if } x \geq 0. \end{array}
ight.$$

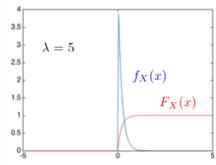




The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x > 0\}$

$$F_X(x) = \left\{ \begin{array}{ll} 0, & \text{if } x < 0 \\ 1 - e^{-\lambda x}, & \text{if } x \ge 0. \end{array} \right.$$





Note that $Pr[X > t] = e^{-\lambda t}$ for t > 0.

1. Expo is memoryless.

1. *Expo* **is memoryless.** Let $X = Expo(\lambda)$.

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] =$$

1. *Expo* is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} =$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$

$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$

$$= Pr[X > t].$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

2. Scaling Expo.

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t] =$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t] = Pr[aX > t] =$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t] = Pr[aX > t] = Pr[X > t/a]$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t]$$
 = $Pr[aX > t] = Pr[X > t/a]$
 = $e^{-\lambda(t/a)} = e^{-(\lambda/a)t}$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t]$$
 = $Pr[aX > t] = Pr[X > t/a]$
 = $e^{-\lambda(t/a)} = e^{-(\lambda/a)t} = Pr[Z > t]$ for $Z = Expo(\lambda/a)$.

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

2. Scaling Expo. Let $X = Expo(\lambda)$ and Y = aX for some a > 0. Then

$$Pr[Y > t] = Pr[aX > t] = Pr[X > t/a]$$

= $e^{-\lambda(t/a)} = e^{-(\lambda/a)t} = Pr[Z > t]$ for $Z = Expo(\lambda/a)$.

Thus, $a \times Expo(\lambda) = Expo(\lambda/a)$.

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

2. Scaling Expo. Let $X = Expo(\lambda)$ and Y = aX for some a > 0. Then

$$Pr[Y > t] = Pr[aX > t] = Pr[X > t/a]$$

= $e^{-\lambda(t/a)} = e^{-(\lambda/a)t} = Pr[Z > t]$ for $Z = Expo(\lambda/a)$.

Thus, $a \times Expo(\lambda) = Expo(\lambda/a)$.

Also, $Expo(\lambda) = \frac{1}{\lambda} Expo(1)$.

3. Scaling Uniform.

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0.

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then,

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] =$$

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then.

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then,

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$
$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] =$$

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then,

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = \frac{1}{b}\delta, \text{ for }$$

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then.

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = \frac{1}{b}\delta, \text{ for } 0 < \frac{y - a}{b} < 1$$

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then.

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = \frac{1}{b}\delta, \text{ for } 0 < \frac{y - a}{b} < 1$$

$$= \frac{1}{b}\delta, \text{ for } a < y < a + b.$$

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then.

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = \frac{1}{b}\delta, \text{ for } 0 < \frac{y - a}{b} < 1$$

$$= \frac{1}{b}\delta, \text{ for } a < y < a + b.$$

Thus, $f_Y(y) = \frac{1}{b}$ for a < y < a + b.

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then,

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = \frac{1}{b}\delta, \text{ for } 0 < \frac{y - a}{b} < 1$$

$$= \frac{1}{b}\delta, \text{ for } a < y < a + b.$$

Thus, $f_Y(y) = \frac{1}{b}$ for a < y < a + b. Hence, Y = U[a, a + b].

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then,

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = \frac{1}{b}\delta, \text{ for } 0 < \frac{y - a}{b} < 1$$

$$= \frac{1}{b}\delta, \text{ for } a < y < a + b.$$

Thus, $f_Y(y) = \frac{1}{b}$ for a < y < a + b. Hence, Y = U[a, a + b].

Replacing b by b-a we see that, if X = U[0,1], then Y = a+(b-a)X is U[a,b].

4. Scaling pdf.

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] =$$

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$
$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] =$$

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$
$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = f_X(\frac{y - a}{b})\frac{\delta}{b}.$$

4. Scaling pdf. Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0. Then

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$
$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = f_X(\frac{y - a}{b})\frac{\delta}{b}.$$

Now, the left-hand side is

4. Scaling pdf. Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0. Then

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$
$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = f_X(\frac{y - a}{b})\frac{\delta}{b}.$$

Now, the left-hand side is $f_Y(y)\delta$.

4. Scaling pdf. Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0. Then

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$
$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = f_X(\frac{y - a}{b})\frac{\delta}{b}.$$

Now, the left-hand side is $f_Y(y)\delta$. Hence,

$$f_Y(y) = \frac{1}{b} f_X(\frac{y-a}{b}).$$

4. Scaling pdf. Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0. Then

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$
$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = f_X(\frac{y - a}{b})\frac{\delta}{b}.$$

Now, the left-hand side is $f_Y(y)\delta$. Hence,

$$f_Y(y) = \frac{1}{b} f_X(\frac{y-a}{b}).$$

Expectation Definition:

Definition: The **expectation** of a random variable X with pdf f(x) is *defined* as

Definition: The **expectation** of a random variable X with pdf f(x) is *defined* as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Definition: The **expectation** of a random variable X with pdf f(x) is *defined* as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification:

Definition: The **expectation** of a random variable X with pdf f(x) is *defined* as

 $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$.

Definition: The **expectation** of a random variable X with pdf f(x) is *defined* as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta]$$

Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta$$

Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Definition: The **expectation** of a random variable X with pdf f(x) is *defined* as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Indeed, for any g, one has $\int g(x)dx \approx \sum_n g(n\delta)\delta$.

Definition: The **expectation** of a random variable X with pdf f(x) is *defined* as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Indeed, for any g, one has $\int g(x)dx \approx \sum_n g(n\delta)\delta$. Choose $g(x) = xf_X(x)$.

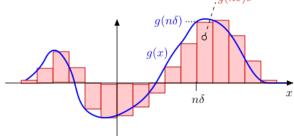
Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Indeed, for any g, one has $\int g(x)dx \approx \sum_n g(n\delta)\delta$. Choose $g(x) = xf_X(x)$.



1. X = U[0,1].

1. X = U[0,1]. Then, $f_X(x) =$

1.
$$X = U[0,1]$$
. Then, $f_X(x) = 1\{0 \le x \le 1\}$.

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx =$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} =$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

2. X = distance to 0 of dart shot uniformly in unit circle.

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x . 1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x \cdot 2x dx =$$

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x . 1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x \cdot 2x dx = \left[\frac{2x^3}{3}\right]_{0}^{1} =$$

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x . 1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x \cdot 2x dx = \left[\frac{2x^3}{3}\right]_{0}^{1} = \frac{2}{3}.$$

3. $X = Expo(\lambda)$.

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$.

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} 1\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda \, e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda \, e^{-\lambda x} dx = - \int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} v(x)du(x).$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} 1\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda \, e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$
$$= 0 - 0 + \frac{1}{\lambda} \int_0^\infty de^{-\lambda x} =$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda \, e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$
$$= 0 - 0 + \frac{1}{\lambda} \int_0^\infty de^{-\lambda x} = -\frac{1}{\lambda}.$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} 1\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda \, e^{-\lambda x} dx = - \int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$
$$= 0 - 0 + \frac{1}{\lambda} \int_0^\infty de^{-\lambda x} = -\frac{1}{\lambda}.$$

Hence, $E[X] = \frac{1}{\lambda}$.

Independent Continuous Random Variables Definition:

Definition: The continuous RVs X and Y are independent if

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem:

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs X and Y are independent if and only if

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs *X* and *Y* are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs *X* and *Y* are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof:

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs X and Y are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs *X* and *Y* are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition:

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs X and Y are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs $X_1, ..., X_n$ are mutually independent if

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs X and Y are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs $X_1, ..., X_n$ are mutually independent if

$$Pr[X_1 \in A_1, \dots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \dots, A_n.$$

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs X and Y are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs $X_1, ..., X_n$ are mutually independent if

$$Pr[X_1 \in A_1, \dots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \dots, A_n.$$

Theorem:

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs *X* and *Y* are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs $X_1, ..., X_n$ are mutually independent if

$$Pr[X_1 \in A_1, \dots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \dots, A_n.$$

Theorem: The continuous RVs $X_1, ..., X_n$ are mutually independent if and only if

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs X and Y are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs $X_1, ..., X_n$ are mutually independent if

$$Pr[X_1 \in A_1, \dots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \dots, A_n.$$

Theorem: The continuous RVs $X_1, ..., X_n$ are mutually independent if and only if

$$f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n).$$

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs *X* and *Y* are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs $X_1, ..., X_n$ are mutually independent if

$$Pr[X_1 \in A_1, \dots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \dots, A_n.$$

Theorem: The continuous RVs $X_1, ..., X_n$ are mutually independent if and only if

$$f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n).$$

Proof:

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs *X* and *Y* are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs $X_1, ..., X_n$ are mutually independent if

$$Pr[X_1 \in A_1, \dots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \dots, A_n.$$

Theorem: The continuous RVs $X_1, ..., X_n$ are mutually independent if and only if

$$f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n).$$

Proof: As in the discrete case.

Two friends go to a restaurant independently uniformly at random between noon and 1pm.

Two friends go to a restaurant independently uniformly at random between noon and 1pm.

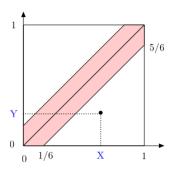
They agree they will wait for 10 minutes.

Two friends go to a restaurant independently uniformly at random between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they meet?

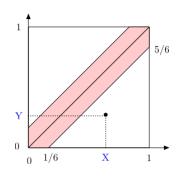
Two friends go to a restaurant independently uniformly at random between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they meet?



Two friends go to a restaurant independently uniformly at random between noon and 1pm.

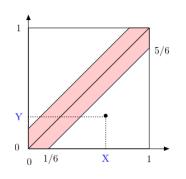
They agree they will wait for 10 minutes. What is the probability they meet?



Here, (X, Y) are the times when the friends reach the restaurant.

Two friends go to a restaurant independently uniformly at random between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they meet?

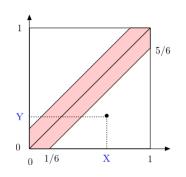


Here, (X, Y) are the times when the friends reach the restaurant.

The shaded area are the pairs where |X - Y| < 1/6,

Two friends go to a restaurant independently uniformly at random between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they meet?

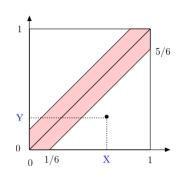


Here, (X, Y) are the times when the friends reach the restaurant.

The shaded area are the pairs where |X - Y| < 1/6, i.e., such that they meet.

Two friends go to a restaurant independently uniformly at random between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they meet?



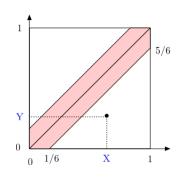
Here, (X, Y) are the times when the friends reach the restaurant.

The shaded area are the pairs where |X - Y| < 1/6, i.e., such that they meet.

The complement is the sum of two rectangles.

Two friends go to a restaurant independently uniformly at random between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they meet?



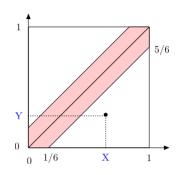
Here, (X, Y) are the times when the friends reach the restaurant.

The shaded area are the pairs where |X - Y| < 1/6, i.e., such that they meet.

The complement is the sum of two rectangles. When you put them together, they form a square

Two friends go to a restaurant independently uniformly at random between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they meet?



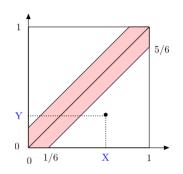
Here, (X, Y) are the times when the friends reach the restaurant.

The shaded area are the pairs where |X - Y| < 1/6, i.e., such that they meet.

The complement is the sum of two rectangles. When you put them together, they form a square with sides 5/6.

Two friends go to a restaurant independently uniformly at random between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they meet?



Thus, $Pr[meet] = 1 - (\frac{5}{6})^2 =$

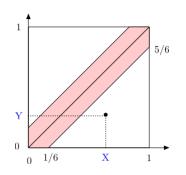
Here, (X, Y) are the times when the friends reach the restaurant.

The shaded area are the pairs where |X - Y| < 1/6, i.e., such that they meet.

The complement is the sum of two rectangles. When you put them together, they form a square with sides 5/6.

Two friends go to a restaurant independently uniformly at random between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they meet?



Thus,
$$Pr[meet] = 1 - (\frac{5}{6})^2 = \frac{11}{36}$$
.

Here, (X, Y) are the times when the friends reach the restaurant.

The shaded area are the pairs where |X - Y| < 1/6, i.e., such that they meet.

The complement is the sum of two rectangles. When you put them together, they form a square with sides 5/6.

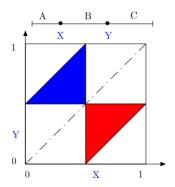
You break a stick at two points chosen independently uniformly at random.

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?

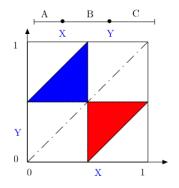
You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?



You break a stick at two points chosen independently uniformly at random.

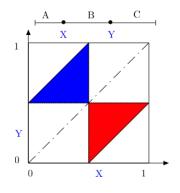
What is the probability you can make a triangle with the three pieces?



Let X, Y be the two break points along the [0,1] stick.

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?

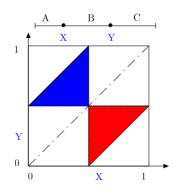


Let X, Y be the two break points along the [0,1] stick.

A triangle if
$$A < B + C$$
, $B < A + C$, and $C < A + B$.

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?

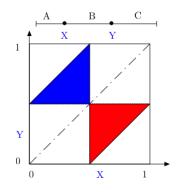


Let X, Y be the two break points along the [0,1] stick.

A triangle if A < B + C, B < A + C, and C < A + B. If X < Y, this means X < 0.5.

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?



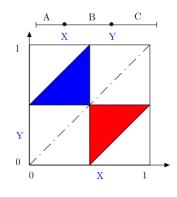
Let X, Y be the two break points along the [0,1] stick.

A triangle if A < B + C, B < A + C, and C < A + B. If X < Y, this means

X < 0.5, Y < X + .5,

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?



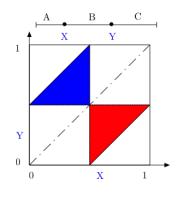
Let X, Y be the two break points along the [0,1] stick.

A triangle if A < B + C, B < A + C, and C < A + B. If X < Y, this means

X < 0.5, Y < X + .5, Y > 0.5.

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?



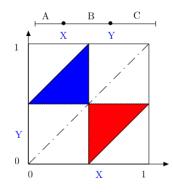
Let X, Y be the two break points along the [0,1] stick.

A triangle if A < B + C, B < A + C, and C < A + B.

If X < Y, this means X < 0.5, Y < X + .5, Y > 0.5. This is the blue triangle.

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?



Let X, Y be the two break points along the [0,1] stick.

A triangle if

$$A < B + C, B < A + C$$
, and $C < A + B$.

If X < Y, this means

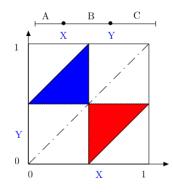
$$X < 0.5, Y < X + .5, Y > 0.5.$$

This is the blue triangle.

If X > Y, get red triangle, by symmetry.

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?



Let X, Y be the two break points along the [0,1] stick.

A triangle if

$$A < B + C, B < A + C$$
, and $C < A + B$.

If X < Y, this means

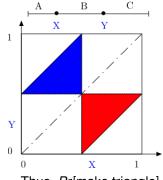
$$X < 0.5, Y < X + .5, Y > 0.5.$$

This is the blue triangle.

If X > Y, get red triangle, by symmetry.

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?



Let X, Y be the two break points along the [0,1] stick.

A triangle if

$$A < B + C, B < A + C$$
, and $C < A + B$.

If X < Y, this means

$$X < 0.5, Y < X + .5, Y > 0.5.$$

This is the blue triangle.

If X > Y, get red triangle, by symmetry.

Thus, Pr[make triangle] = 1/4.

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent.

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$.

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$.

Calculate E[Z].

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$.

Calculate E[Z].

We compute f_Z , then integrate.

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$.

Calculate E[Z].

We compute f_Z , then integrate.

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$.

Calculate E[Z].

We compute f_Z , then integrate.

$$Pr[Z < z] = Pr[X < z, Y < z]$$

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$.

Calculate E[Z].

We compute f_Z , then integrate.

$$Pr[Z < z] = Pr[X < z, Y < z] = Pr[X < z]Pr[Y < z]$$

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$.

Calculate E[Z].

We compute f_Z , then integrate.

$$Pr[Z < z] = Pr[X < z, Y < z] = Pr[X < z]Pr[Y < z]$$

= $(1 - e^{-\lambda z})(1 - e^{-\mu z})$ =

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$.

Calculate E[Z].

We compute f_Z , then integrate.

$$Pr[Z < z] = Pr[X < z, Y < z] = Pr[X < z]Pr[Y < z]$$

$$= (1 - e^{-\lambda z})(1 - e^{-\mu z}) = 1 - e^{-\lambda z} - e^{-\mu z} + e^{-(\lambda + \mu)z}$$

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$.

Calculate E[Z].

We compute f_Z , then integrate.

One has

$$Pr[Z < z] = Pr[X < z, Y < z] = Pr[X < z]Pr[Y < z]$$

$$= (1 - e^{-\lambda z})(1 - e^{-\mu z}) = 1 - e^{-\lambda z} - e^{-\mu z} + e^{-(\lambda + \mu)z}$$

$$f_Z(z) = \lambda e^{-\lambda z} + \mu e^{-\mu z} - (\lambda + \mu) e^{-(\lambda + \mu)z}, \forall z > 0.$$

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$.

Calculate E[Z].

We compute f_Z , then integrate.

One has

$$Pr[Z < z] = Pr[X < z, Y < z] = Pr[X < z]Pr[Y < z]$$

$$= (1 - e^{-\lambda z})(1 - e^{-\mu z}) = 1 - e^{-\lambda z} - e^{-\mu z} + e^{-(\lambda + \mu)z}$$

$$f_Z(z) = \lambda e^{-\lambda z} + \mu e^{-\mu z} - (\lambda + \mu) e^{-(\lambda + \mu)z}, \forall z > 0.$$

Since,
$$\int_0^\infty x\lambda e^{-\lambda x} dx = \lambda \left[-\frac{xe^{-\lambda x}}{\lambda} - \frac{e^{-\lambda x}}{\lambda^2} \right]_0^\infty = \frac{1}{\lambda}$$
.

$$E[Z] = \int_0^\infty z f_Z(z) dz =$$

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$.

Calculate E[Z].

We compute f_Z , then integrate.

One has

$$Pr[Z < z] = Pr[X < z, Y < z] = Pr[X < z]Pr[Y < z]$$

$$= (1 - e^{-\lambda z})(1 - e^{-\mu z}) = 1 - e^{-\lambda z} - e^{-\mu z} + e^{-(\lambda + \mu)z}$$

$$f_Z(z) = \lambda e^{-\lambda z} + \mu e^{-\mu z} - (\lambda + \mu) e^{-(\lambda + \mu)z}, \forall z > 0.$$

Since,
$$\int_0^\infty x \lambda e^{-\lambda x} dx = \lambda \left[-\frac{x e^{-\lambda x}}{\lambda} - \frac{e^{-\lambda x}}{\lambda^2} \right]_0^\infty = \frac{1}{\lambda}$$
.

$$E[Z] = \int_0^\infty z f_Z(z) dz = \frac{1}{\lambda} + \frac{1}{\mu} - \frac{1}{\lambda + \mu}.$$

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$.

Calculate E[Z].

We compute f_Z , then integrate.

One has

$$Pr[Z < z] = Pr[X < z, Y < z] = Pr[X < z]Pr[Y < z]$$

$$= (1 - e^{-\lambda z})(1 - e^{-\mu z}) = 1 - e^{-\lambda z} - e^{-\mu z} + e^{-(\lambda + \mu)z}$$

$$f_Z(z) = \lambda e^{-\lambda z} + \mu e^{-\mu z} - (\lambda + \mu) e^{-(\lambda + \mu)z}, \forall z > 0.$$

Since,
$$\int_0^\infty x \lambda e^{-\lambda x} dx = \lambda \left[-\frac{x e^{-\lambda x}}{\lambda} - \frac{e^{-\lambda x}}{\lambda^2} \right]_0^\infty = \frac{1}{\lambda}$$
.

$$E[Z] = \int_0^\infty z f_Z(z) dz = \frac{1}{\lambda} + \frac{1}{\mu} - \frac{1}{\lambda + \mu}.$$

Let X_1, \ldots, X_n be i.i.d. Expo(1).

Let X_1, \ldots, X_n be i.i.d. Expo(1). Define $Z = \max\{X_1, X_2, \ldots, X_n\}$.

Let $X_1, ..., X_n$ be i.i.d. Expo(1). Define $Z = \max\{X_1, X_2, ..., X_n\}$. Calculate E[Z].

Let X_1, \ldots, X_n be i.i.d. Expo(1). Define $Z = \max\{X_1, X_2, \ldots, X_n\}$.

Calculate E[Z].

We use a recursion.

Let X_1, \ldots, X_n be i.i.d. Expo(1). Define $Z = max\{X_1, X_2, \ldots, X_n\}$.

Calculate E[Z].

We use a recursion. The key idea is as follows:

Let X_1, \ldots, X_n be i.i.d. Expo(1). Define $Z = \max\{X_1, X_2, \ldots, X_n\}$.

Calculate E[Z].

We use a recursion. The key idea is as follows:

$$Z = \min\{X_1, \dots, X_n\} + V$$

where V is the maximum of n-1 i.i.d. Expo(1).

Let $X_1, ..., X_n$ be i.i.d. Expo(1). Define $Z = \max\{X_1, X_2, ..., X_n\}$.

Calculate E[Z].

We use a recursion. The key idea is as follows:

$$Z = \min\{X_1, \dots, X_n\} + V$$

where V is the maximum of n-1 i.i.d. Expo(1). This follows from the memoryless property of the exponential.

Let $X_1, ..., X_n$ be i.i.d. Expo(1). Define $Z = \max\{X_1, X_2, ..., X_n\}$.

Calculate E[Z].

We use a recursion. The key idea is as follows:

$$Z = \min\{X_1, \dots, X_n\} + V$$

where V is the maximum of n-1 i.i.d. Expo(1). This follows from the memoryless property of the exponential.

Let then $A_n = E[Z]$.

Let $X_1, ..., X_n$ be i.i.d. Expo(1). Define $Z = \max\{X_1, X_2, ..., X_n\}$.

Calculate E[Z].

We use a recursion. The key idea is as follows:

$$Z = \min\{X_1, \dots, X_n\} + V$$

where V is the maximum of n-1 i.i.d. Expo(1). This follows from the memoryless property of the exponential.

Let then $A_n = E[Z]$. We see that

$$A_n = E[\min\{X_1,\ldots,X_n\}] + A_{n-1}$$

Let $X_1, ..., X_n$ be i.i.d. Expo(1). Define $Z = \max\{X_1, X_2, ..., X_n\}$.

Calculate E[Z].

We use a recursion. The key idea is as follows:

$$Z = \min\{X_1, \dots, X_n\} + V$$

where V is the maximum of n-1 i.i.d. Expo(1). This follows from the memoryless property of the exponential.

Let then $A_n = E[Z]$. We see that

$$A_n = E[\min\{X_1, \dots, X_n\}] + A_{n-1}$$

= $\frac{1}{n} + A_{n-1}$

Let X_1, \ldots, X_n be i.i.d. Expo(1). Define $Z = \max\{X_1, X_2, \ldots, X_n\}$.

Calculate E[Z].

We use a recursion. The key idea is as follows:

$$Z = \min\{X_1, \dots, X_n\} + V$$

where V is the maximum of n-1 i.i.d. Expo(1). This follows from the memoryless property of the exponential.

Let then $A_n = E[Z]$. We see that

$$A_n = E[\min\{X_1, ..., X_n\}] + A_{n-1}$$

= $\frac{1}{n} + A_{n-1}$

because the minimum of *Expo* is *Expo* with the sum of the rates.

Let $X_1,...,X_n$ be i.i.d. Expo(1). Define $Z = \max\{X_1,X_2,...,X_n\}$.

Calculate E[Z].

We use a recursion. The key idea is as follows:

$$Z = \min\{X_1, \dots, X_n\} + V$$

where V is the maximum of n-1 i.i.d. Expo(1). This follows from the memoryless property of the exponential.

Let then $A_n = E[Z]$. We see that

$$A_n = E[\min\{X_1, ..., X_n\}] + A_{n-1}$$

= $\frac{1}{n} + A_{n-1}$

because the minimum of *Expo* is *Expo* with the sum of the rates.

Hence,

$$E[Z] = A_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = H(n).$$

Quantization Noise

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise.

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Model:

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Model: X = U[0,1] is the continuous value.

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple of 2^{-n} to X.

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits.

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is Z := X - Y.

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is Z := X - Y.

The power of the noise is $E[Z^2]$.

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is Z := X - Y.

The power of the noise is $E[Z^2]$.

Analysis:

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is Z := X - Y.

The power of the noise is $E[Z^2]$.

Analysis: We see that Z is uniform in $[0, a = 2^{-(n+1)}]$.

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is Z := X - Y.

The power of the noise is $E[Z^2]$.

Analysis: We see that Z is uniform in $[0, a = 2^{-(n+1)}]$.

Thus,

$$E[Z^2] = \frac{a^2}{3} = \frac{1}{3}2^{-2(n+1)}.$$

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is Z := X - Y.

The power of the noise is $E[Z^2]$.

Analysis: We see that Z is uniform in $[0, a = 2^{-(n+1)}]$.

Thus,

$$E[Z^2] = \frac{a^2}{3} = \frac{1}{3}2^{-2(n+1)}.$$

The power of the signal X is $E[X^2] =$

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is Z := X - Y.

The power of the noise is $E[Z^2]$.

Analysis: We see that Z is uniform in $[0, a = 2^{-(n+1)}]$.

Thus,

$$E[Z^2] = \frac{a^2}{3} = \frac{1}{3}2^{-2(n+1)}.$$

The power of the signal *X* is $E[X^2] = \frac{1}{3}$.

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is Z := X - Y.

The power of the noise is $E[Z^2]$.

Analysis: We see that Z is uniform in $[0, a = 2^{-(n+1)}]$.

Thus,

$$E[Z^2] = \frac{a^2}{3} = \frac{1}{3}2^{-2(n+1)}.$$

The power of the signal *X* is $E[X^2] = \frac{1}{3}$.

We saw that
$$E[Z^2] = \frac{1}{3}2^{-2(n+1)}$$
 and $E[X^2] = \frac{1}{3}$.

We saw that $E[Z^2] = \frac{1}{3}2^{-2(n+1)}$ and $E[X^2] = \frac{1}{3}$. The **signal to noise ratio** (SNR)

We saw that $E[Z^2] = \frac{1}{3}2^{-2(n+1)}$ and $E[X^2] = \frac{1}{3}$.

The **signal to noise ratio** (SNR) is the power of the signal divided by the power of the noise.

We saw that $E[Z^2] = \frac{1}{3}2^{-2(n+1)}$ and $E[X^2] = \frac{1}{3}$.

The **signal to noise ratio** (SNR) is the power of the signal divided by the power of the noise.

Thus,

$$SNR = 2^{2(n+1)}$$
.

We saw that $E[Z^2] = \frac{1}{3}2^{-2(n+1)}$ and $E[X^2] = \frac{1}{3}$.

The **signal to noise ratio** (SNR) is the power of the signal divided by the power of the noise.

Thus,

$$SNR = 2^{2(n+1)}$$
.

Expressed in decibels, one has

$$SNR(dB) = 10\log_{10}(SNR)$$

We saw that $E[Z^2] = \frac{1}{3}2^{-2(n+1)}$ and $E[X^2] = \frac{1}{3}$.

The **signal to noise ratio** (SNR) is the power of the signal divided by the power of the noise.

Thus,

$$SNR = 2^{2(n+1)}$$
.

Expressed in decibels, one has

$$SNR(dB) = 10\log_{10}(SNR) = 20(n+1)\log_{10}(2)$$

We saw that $E[Z^2] = \frac{1}{3}2^{-2(n+1)}$ and $E[X^2] = \frac{1}{3}$.

The **signal to noise ratio** (SNR) is the power of the signal divided by the power of the noise.

Thus,

$$SNR = 2^{2(n+1)}$$
.

Expressed in decibels, one has

$$SNR(dB) = 10\log_{10}(SNR) = 20(n+1)\log_{10}(2) \approx 6(n+1).$$

We saw that $E[Z^2] = \frac{1}{3}2^{-2(n+1)}$ and $E[X^2] = \frac{1}{3}$.

The **signal to noise ratio** (SNR) is the power of the signal divided by the power of the noise.

Thus,

$$SNR = 2^{2(n+1)}$$
.

Expressed in decibels, one has

$$SNR(dB) = 10\log_{10}(SNR) = 20(n+1)\log_{10}(2) \approx 6(n+1).$$

For instance, if n = 16, then $SNR(dB) \approx 112dB$.

Problem 1:

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

Analysis:

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

$$E[(X-Y)^2] =$$

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

$$E[(X-Y)^2] = E[X^2 + Y^2 - 2XY]$$

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY]$$
$$= \frac{1}{3} + \frac{1}{3} - 2\frac{1}{2}\frac{1}{2}$$

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY]$$

$$= \frac{1}{3} + \frac{1}{3} - 2\frac{1}{2}\frac{1}{2}$$

$$= \frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$$

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

Analysis: One has

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY]$$

$$= \frac{1}{3} + \frac{1}{3} - 2\frac{1}{2}\frac{1}{2}$$

$$= \frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$$

Problem 2:

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

Analysis: One has

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY]$$

$$= \frac{1}{3} + \frac{1}{3} - 2\frac{1}{2}\frac{1}{2}$$

$$= \frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$$

Problem 2: What about in a unit square?

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

Analysis: One has

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY]$$

$$= \frac{1}{3} + \frac{1}{3} - 2\frac{1}{2}\frac{1}{2}$$

$$= \frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$$

Problem 2: What about in a unit square?

Analysis:

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

Analysis: One has

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY]$$

$$= \frac{1}{3} + \frac{1}{3} - 2\frac{1}{2}\frac{1}{2}$$

$$= \frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$$

Problem 2: What about in a unit square?

Analysis: One has

$$E[||X - Y||^2] =$$

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

Analysis: One has

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY]$$

$$= \frac{1}{3} + \frac{1}{3} - 2\frac{1}{2}\frac{1}{2}$$

$$= \frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$$

Problem 2: What about in a unit square?

Analysis: One has

$$E[||\mathbf{X} - \mathbf{Y}||^2] = E[(X_1 - Y_1)^2] + E[(X_2 - Y_2)^2]$$

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

Analysis: One has

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY]$$

$$= \frac{1}{3} + \frac{1}{3} - 2\frac{1}{2}\frac{1}{2}$$

$$= \frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$$

Problem 2: What about in a unit square?

Analysis: One has

$$E[||\mathbf{X} - \mathbf{Y}||^2] = E[(X_1 - Y_1)^2] + E[(X_2 - Y_2)^2]$$

= $2 \times \frac{1}{6}$.

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

Analysis: One has

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY]$$

$$= \frac{1}{3} + \frac{1}{3} - 2\frac{1}{2}\frac{1}{2}$$

$$= \frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$$

Problem 2: What about in a unit square?

Analysis: One has

$$E[||\mathbf{X} - \mathbf{Y}||^2] = E[(X_1 - Y_1)^2] + E[(X_2 - Y_2)^2]$$

= $2 \times \frac{1}{6}$.

Problem 3:

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

Analysis: One has

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY]$$

$$= \frac{1}{3} + \frac{1}{3} - 2\frac{1}{2}\frac{1}{2}$$

$$= \frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$$

Problem 2: What about in a unit square?

Analysis: One has

$$E[||\mathbf{X} - \mathbf{Y}||^2] = E[(X_1 - Y_1)^2] + E[(X_2 - Y_2)^2]$$

= $2 \times \frac{1}{6}$.

Problem 3: What about in *n* dimensions?

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

Analysis: One has

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY]$$

$$= \frac{1}{3} + \frac{1}{3} - 2\frac{1}{2}\frac{1}{2}$$

$$= \frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$$

Problem 2: What about in a unit square?

Analysis: One has

$$E[||\mathbf{X} - \mathbf{Y}||^2] = E[(X_1 - Y_1)^2] + E[(X_2 - Y_2)^2]$$

= $2 \times \frac{1}{6}$.

Problem 3: What about in *n* dimensions? $\frac{n}{6}$.

The geometric and exponential distributions are similar.

The geometric and exponential distributions are similar. They are both memoryless.

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N,

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let *X* be the time until the first *H*.

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let *X* be the time until the first *H*.

Fact:

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let *X* be the time until the first *H*.

Fact: $X \approx Expo(p)$.

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let *X* be the time until the first *H*.

Fact: $X \approx Expo(p)$.

Analysis:

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let *X* be the time until the first *H*.

Fact: $X \approx Expo(p)$.

Analysis: Note that

 $Pr[X > t] \approx Pr[first Nt flips are tails]$

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let X be the time until the first H.

Fact: $X \approx Expo(p)$.

Analysis: Note that

$$Pr[X > t] \approx Pr[\text{first } Nt \text{ flips are tails}]$$

= $(1 - \frac{p}{N})^{Nt}$

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let X be the time until the first H.

Fact: $X \approx Expo(p)$.

Analysis: Note that

$$Pr[X > t] \approx Pr[\text{first Nt flips are tails}]$$

= $(1 - \frac{p}{N})^{Nt} \approx \exp\{-pt\}.$

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let *X* be the time until the first *H*.

Fact: $X \approx Expo(p)$.

Analysis: Note that

$$Pr[X > t] \approx Pr[\text{first Nt flips are tails}]$$

= $(1 - \frac{p}{N})^{Nt} \approx \exp\{-pt\}.$

Indeed, $(1 - \frac{a}{N})^N \approx \exp\{-a\}$.

Continuous Probability

Continuous RVs are essentially the same as discrete RVs

- Continuous RVs are essentially the same as discrete RVs
- ▶ Think that $X \approx x$ with probability $f_X(x)\varepsilon$

- Continuous RVs are essentially the same as discrete RVs
- ► Think that $X \approx x$ with probability $f_X(x)\varepsilon$
- Sums become integrals,

- Continuous RVs are essentially the same as discrete RVs
- ► Think that $X \approx x$ with probability $f_X(x)\varepsilon$
- Sums become integrals,
- The exponential distribution is magical:

- Continuous RVs are essentially the same as discrete RVs
- ► Think that $X \approx x$ with probability $f_X(x)\varepsilon$
- Sums become integrals,
- The exponential distribution is magical: memoryless.