Probability

Probability

Probability!

Probability

Probability!
Confuses us.

Probability

Probability!

Confuses us. But really neat.

Probability

Probability!
Confuses us. But really neat.
At times,

Probability

Probability!
Confuses us. But really neat.
At times, continuous.

Probability

Probability!
Confuses us. But really neat. At times, continuous. At others,

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.
Sample Space: $\Omega, \operatorname{Pr}[\omega]$.

Probability

Probability!

Confuses us. But really neat.
At times, continuous. At others, discrete.
Sample Space: $\Omega, \operatorname{Pr}[\omega]$.
Event: $\operatorname{Pr}[A]=\sum_{\omega \in A} \operatorname{Pr}[\omega]$
$\sum_{\omega} \operatorname{Pr}[\omega]=1$.

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.
Sample Space: $\Omega, \operatorname{Pr}[\omega]$.
Event: $\operatorname{Pr}[A]=\sum_{\omega \in A} \operatorname{Pr}[\omega]$
$\sum_{\omega} \operatorname{Pr}[\omega]=1$.

Random Variable: X
Event: $A=[a, b], \operatorname{Pr}[X \in A]$,

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.

Sample Space: $\Omega, \operatorname{Pr}[\omega]$.
Event: $\operatorname{Pr}[A]=\sum_{\omega \in A} \operatorname{Pr}[\omega]$
$\sum_{\omega} \operatorname{Pr}[\omega]=1$.
Random variables: $X(\omega)$.
Distribution: $\operatorname{Pr}[X=x]$

$$
\sum_{x} \operatorname{Pr}[X=x]=1
$$

$$
\begin{aligned}
& \text { Event: } A=[a, b], \operatorname{Pr}[X \in A], \\
& \text { CDF: } F(x)=P r[X \leq x] . \\
& \text { PDF: } f(x)=\frac{d F(x)}{d x} . \\
& \int_{-\infty}^{\infty} f(x)=1 .
\end{aligned}
$$

Probability

Probability!
Confuses us. But really neat.
At times, continuous. At others, discrete.

Sample Space: $\Omega, \operatorname{Pr}[\omega]$.
Event: $\operatorname{Pr}[A]=\sum_{\omega \in A} \operatorname{Pr}[\omega]$
$\sum_{\omega} \operatorname{Pr}[\omega]=1$.
Random variables: $X(\omega)$.
Distribution: $\operatorname{Pr}[X=x]$

$$
\sum_{x} \operatorname{Pr}[X=x]=1
$$

$$
\begin{aligned}
& \text { Event: } A=[a, b], \operatorname{Pr}[X \in A], \\
& \text { CDF: } F(x)=P r[X \leq x] . \\
& \text { PDF: } f(x)=\frac{d F(x)}{d x} . \\
& \int_{-\infty}^{\infty} f(x)=1 .
\end{aligned}
$$

Probability

Probability!

Confuses us. But really neat.
At times, continuous. At others, discrete.

Sample Space: $\Omega, \operatorname{Pr}[\omega]$.
Event: $\operatorname{Pr}[A]=\sum_{\omega \in A} \operatorname{Pr}[\omega]$
$\sum_{\omega} \operatorname{Pr}[\omega]=1$.
Random variables: $X(\omega)$.
Distribution: $\operatorname{Pr}[X=x]$

$$
\sum_{x} \operatorname{Pr}[X=x]=1 .
$$

Continuous as Discrete.

$$
\operatorname{Pr}[X \in[x, x+\delta]] \approx f(x) \delta
$$

Random Variable: X
Event: $A=[a, b], \operatorname{Pr}[X \in A]$,
CDF: $F(x)=\operatorname{Pr}[X \leq x]$.
PDF: $f(x)=\frac{d F(x)}{d x}$.
$\int_{-\infty}^{\infty} f(x)=1$.

Probability Rules are all good.

Conditional Probabity.

Probability Rules are all good.

Conditional Probabity.
Events: A, B

Probability Rules are all good.

Conditional Probabity.
Events: A, B
Discrete: "Heads", "Tails", $X=1, Y=5$.

Probability Rules are all good.

Conditional Probabity.
Events: A, B
Discrete: "Heads", "Tails", $X=1, Y=5$.
Continuous: X in [.2,.3]. $X \in[.2, .3]$ or $X \in[.4, .6]$.

Probability Rules are all good.

Conditional Probabity.
Events: A, B
Discrete: "Heads", "Tails", $X=1, Y=5$.
Continuous: X in [.2,.3]. $X \in[.2, .3]$ or $X \in[.4, .6]$.
Conditional Probability: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cap \operatorname{Pr}[B]}{\operatorname{Pr}[B]}$

Probability Rules are all good.

Conditional Probabity.
Events: A, B
Discrete: "Heads", "Tails", $X=1, Y=5$.
Continuous: X in [.2,.3]. $X \in[.2, .3]$ or $X \in[.4, .6]$.
Conditional Probability: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cap \operatorname{Pr}[B]}{\operatorname{Pr}[B]}$

$$
\begin{aligned}
& \operatorname{Pr}[\text { "Second Heads"|"First Heads"], } \\
& \operatorname{Pr}[X \in[.2, .3] \mid X \in[.2, .3] \text { or } X \in[.5, .6]] .
\end{aligned}
$$

Probability Rules are all good.

Conditional Probabity.
Events: A, B
Discrete: "Heads", "Tails", $X=1, Y=5$.
Continuous: X in [.2, .3]. $X \in[.2, .3]$ or $X \in[.4, .6]$.
Conditional Probability: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cap \operatorname{Pr}[B]}{\operatorname{Pr}[B]}$
Pr ["Second Heads"|"First Heads"],
$\operatorname{Pr}[X \in[.2, .3] \mid X \in[.2, .3]$ or $X \in[.5, .6]]$.
Total Probability Rule: $\operatorname{Pr}[A]=\operatorname{Pr}[A \cap B]+\operatorname{Pr}[A \cap \bar{B}]$

Probability Rules are all good.

Conditional Probabity.
Events: A, B
Discrete: "Heads", "Tails", $X=1, Y=5$.
Continuous: X in [.2, .3]. $X \in[.2, .3]$ or $X \in[.4, .6]$.
Conditional Probability: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cap \operatorname{Pr}[B]}{\operatorname{Pr}[B]}$
Pr ["Second Heads"|"First Heads"],
$\operatorname{Pr}[X \in[.2, .3] \mid X \in[.2, .3]$ or $X \in[.5, .6]]$.
Total Probability Rule: $\operatorname{Pr}[A]=\operatorname{Pr}[A \cap B]+\operatorname{Pr}[A \cap \bar{B}]$
$\operatorname{Pr}[$ "Second Heads"] $=\operatorname{Pr}[H H]+\operatorname{Pr}[H T]$

Probability Rules are all good.

Conditional Probabity.
Events: A, B
Discrete: "Heads", "Tails", $X=1, Y=5$.
Continuous: X in [.2,.3]. $X \in[.2, .3]$ or $X \in[.4, .6]$.
Conditional Probability: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cap \operatorname{Pr}[B]}{\operatorname{Pr}[B]}$
Pr["Second Heads"|"First Heads"],
$\operatorname{Pr}[X \in[.2, .3] \mid X \in[.2, .3]$ or $X \in[.5, .6]]$.
Total Probability Rule: $\operatorname{Pr}[A]=\operatorname{Pr}[A \cap B]+\operatorname{Pr}[A \cap \bar{B}]$
$\operatorname{Pr}[$ "Second Heads"] $=\operatorname{Pr}[H H]+\operatorname{Pr}[H T]$
B is First coin heads.

Probability Rules are all good.

Conditional Probabity.
Events: A, B
Discrete: "Heads", "Tails", $X=1, Y=5$.
Continuous: X in [.2, .3]. $X \in[.2, .3]$ or $X \in[.4, .6]$.
Conditional Probability: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cap \operatorname{Pr}[B]}{\operatorname{Pr}[B]}$
Pr ["Second Heads"|"First Heads"],
$\operatorname{Pr}[X \in[.2, .3] \mid X \in[.2, .3]$ or $X \in[.5, .6]]$.
Total Probability Rule: $\operatorname{Pr}[A]=\operatorname{Pr}[A \cap B]+\operatorname{Pr}[A \cap \bar{B}]$
$\operatorname{Pr}[$ "Second Heads"] $=\operatorname{Pr}[H H]+\operatorname{Pr}[H T]$
B is First coin heads.

$$
\operatorname{Pr}[X \in[.45, .55]]=\operatorname{Pr}[X \in[.45, .50]]+\operatorname{Pr}[X \in(.50, .55]]
$$

Probability Rules are all good.

Conditional Probabity.
Events: A, B
Discrete: "Heads", "Tails", $X=1, Y=5$.
Continuous: X in [.2,.3]. $X \in[.2, .3]$ or $X \in[.4, .6]$.
Conditional Probability: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cap \operatorname{Pr}[B]}{\operatorname{Pr}[B]}$

$$
\begin{aligned}
& \operatorname{Pr}[\text { "Second Heads"|"First Heads"], } \\
& \operatorname{Pr}[X \in[.2, .3] \mid X \in[.2, .3] \text { or } X \in[.5, .6]] .
\end{aligned}
$$

Total Probability Rule: $\operatorname{Pr}[A]=\operatorname{Pr}[A \cap B]+\operatorname{Pr}[A \cap \bar{B}]$
$\operatorname{Pr}[$ "Second Heads"] $=\operatorname{Pr}[H H]+\operatorname{Pr}[H T]$
B is First coin heads.

$$
\begin{aligned}
& \operatorname{Pr}[X \in[.45, .55]]=\operatorname{Pr}[X \in[.45, .50]]+\operatorname{Pr}[X \in(.50, .55]] \\
& \quad B \text { is } X \in[0, .5]
\end{aligned}
$$

Probability Rules are all good.

Conditional Probabity.
Events: A, B
Discrete: "Heads", "Tails", $X=1, Y=5$.
Continuous: X in [.2,.3]. $X \in[.2, .3]$ or $X \in[.4, .6]$.
Conditional Probability: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cap \operatorname{Pr}[B]}{\operatorname{Pr}[B]}$

$$
\begin{aligned}
& \operatorname{Pr}[\text { "Second Heads"|"First Heads"], } \\
& \operatorname{Pr}[X \in[.2, .3] \mid X \in[.2, .3] \text { or } X \in[.5, .6]] .
\end{aligned}
$$

Total Probability Rule: $\operatorname{Pr}[A]=\operatorname{Pr}[A \cap B]+\operatorname{Pr}[A \cap \bar{B}]$
$\operatorname{Pr}[$ "Second Heads"] $=\operatorname{Pr}[H H]+\operatorname{Pr}[H T]$
B is First coin heads.

$$
\begin{aligned}
& \operatorname{Pr}[X \in[.45, .55]]=\operatorname{Pr}[X \in[.45, .50]]+\operatorname{Pr}[X \in(.50, .55]] \\
& \quad B \text { is } X \in[0, .5]
\end{aligned}
$$

Probability Rules are all good.

Conditional Probabity.
Events: A, B
Discrete: "Heads", "Tails", $X=1, Y=5$.
Continuous: X in [.2, .3]. $X \in[.2, .3]$ or $X \in[.4, .6]$.
Conditional Probability: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cap \operatorname{Pr}[B]}{\operatorname{Pr}[B]}$

$$
\begin{aligned}
& \operatorname{Pr}[\text { "Second Heads"|"First Heads"], } \\
& \operatorname{Pr}[X \in[.2, .3] \mid X \in[.2, .3] \text { or } X \in[.5, .6]] .
\end{aligned}
$$

Total Probability Rule: $\operatorname{Pr}[A]=\operatorname{Pr}[A \cap B]+\operatorname{Pr}[A \cap \bar{B}]$
$\operatorname{Pr}[$ "Second Heads"] $=\operatorname{Pr}[H H]+\operatorname{Pr}[H T]$
B is First coin heads.

$$
\begin{aligned}
& \operatorname{Pr}[X \in[.45, .55]]=\operatorname{Pr}[X \in[.45, .50]]+\operatorname{Pr}[X \in(.50, .55]] \\
& \quad B \text { is } X \in[0, .5]
\end{aligned}
$$

Product Rule: $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]$.
Bayes Rule: $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[B \mid A] \operatorname{Pr}[A] / \operatorname{Pr}[B]$.

Probability Rules are all good.

Conditional Probabity.
Events: A, B
Discrete: "Heads", "Tails", $X=1, Y=5$.
Continuous: X in [.2, .3]. $X \in[.2, .3]$ or $X \in[.4, .6]$.
Conditional Probability: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cap \operatorname{Pr}[B]}{\operatorname{Pr}[B]}$

$$
\begin{aligned}
& \operatorname{Pr}[\text { "Second Heads"|"First Heads"], } \\
& \operatorname{Pr}[X \in[.2, .3] \mid X \in[.2, .3] \text { or } X \in[.5, .6]] .
\end{aligned}
$$

Total Probability Rule: $\operatorname{Pr}[A]=\operatorname{Pr}[A \cap B]+\operatorname{Pr}[A \cap \bar{B}]$
$\operatorname{Pr}[$ "Second Heads"] $=\operatorname{Pr}[H H]+\operatorname{Pr}[H T]$
B is First coin heads.

$$
\begin{aligned}
& \operatorname{Pr}[X \in[.45, .55]]=\operatorname{Pr}[X \in[.45, .50]]+\operatorname{Pr}[X \in(.50, .55]] \\
& \quad B \text { is } X \in[0, .5]
\end{aligned}
$$

Product Rule: $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]$.
Bayes Rule: $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[B \mid A] \operatorname{Pr}[A] / \operatorname{Pr}[B]$.
All work for continuous with intervals as events.

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution?

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one.

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one. And here is another.

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one. And here is another.
The distribution of one of the variables.

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one. And here is another.
The distribution of one of the variables.
$E[Y \mid X]$?

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one. And here is another.
The distribution of one of the variables.
$E[Y \mid X]$?

$$
E[Y \mid X=1]=(.03 \times 1+.2 \times 2+.21 \times 3+.02 \times 5) / .44=\frac{1.16}{.44} .
$$

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one. And here is another.
The distribution of one of the variables.
$E[Y \mid X]$?

$$
\begin{aligned}
& E[Y \mid X=1]=(.03 \times 1+.2 \times 2+.21 \times 3+.02 \times 5) / .44=\frac{1.16}{44} . \\
& E[Y \mid X=2]=(.05 \times 1+.01 \times 2+.06 \times 3+.2 \times 5) / .32=\frac{1.25}{.32} .
\end{aligned}
$$

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one. And here is another.
The distribution of one of the variables.
$E[Y \mid X]$?

$$
\begin{aligned}
& E[Y \mid X=1]=(.03 \times 1+.2 \times 2+.21 \times 3+.02 \times 5) / .44=\frac{1.16}{44} . \\
& E[Y \mid X=2]=(.05 \times 1+.01 \times 2+.06 \times 3+.2 \times 5) / .32=\frac{1.25}{.25} . \\
& E[Y \mid X=4]=(.1 \times 1+.03 \times 2+.03 \times 3+.02 \times 5) / .18=\frac{.35}{.18} .
\end{aligned}
$$

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one. And here is another.
The distribution of one of the variables.
$E[Y \mid X]$?
$E[Y \mid X=1]=(.03 \times 1+.2 \times 2+.21 \times 3+.02 \times 5) / .44=\frac{1.16}{44}$.
$E[Y \mid X=2]=(.05 \times 1+.01 \times 2+.06 \times 3+.2 \times 5) / .32=\frac{1.25}{.32}$.
$E[Y \mid X=4]=(.1 \times 1+.03 \times 2+.03 \times 3+.02 \times 5) / .18=\frac{.35}{18}$.
$E[Y \mid X=8]=(.02 \times 1+.02 \times 2+.01 \times 3+.01 \times 5) / .06=\frac{.10}{.06}$.

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one. And here is another.
The distribution of one of the variables.
$E[Y \mid X]$?
$E[Y \mid X=1]=(.03 \times 1+.2 \times 2+.21 \times 3+.02 \times 5) / .44=\frac{1.16}{44}$.
$E[Y \mid X=2]=(.05 \times 1+.01 \times 2+.06 \times 3+.2 \times 5) / .32=\frac{1.25}{.32}$.
$E[Y \mid X=4]=(.1 \times 1+.03 \times 2+.03 \times 3+.02 \times 5) / .18=\frac{.35}{18}$.
$E[Y \mid X=8]=(.02 \times 1+.02 \times 2+.01 \times 3+.01 \times 5) / .06=\frac{.10}{.06}$.
$E[Y]$

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one. And here is another.
The distribution of one of the variables.
$E[Y \mid X]$?
$E[Y \mid X=1]=(.03 \times 1+.2 \times 2+.21 \times 3+.02 \times 5) / .44=\frac{1.16}{44}$.
$E[Y \mid X=2]=(.05 \times 1+.01 \times 2+.06 \times 3+.2 \times 5) / .32=\frac{1.25}{.32}$.
$E[Y \mid X=4]=(.1 \times 1+.03 \times 2+.03 \times 3+.02 \times 5) / .18=\frac{.35}{18}$.
$E[Y \mid X=8]=(.02 \times 1+.02 \times 2+.01 \times 3+.01 \times 5) / .06=\frac{.10}{.06}$.
$E[Y]=E[E[Y \mid X]]=$

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one. And here is another.
The distribution of one of the variables.
$E[Y \mid X]$?
$E[Y \mid X=1]=(.03 \times 1+.2 \times 2+.21 \times 3+.02 \times 5) / .44=\frac{1.16}{44}$.
$E[Y \mid X=2]=(.05 \times 1+.01 \times 2+.06 \times 3+.2 \times 5) / .32=\frac{1.25}{.32}$.
$E[Y \mid X=4]=(.1 \times 1+.03 \times 2+.03 \times 3+.02 \times 5) / .18=\frac{.35}{.18}$.
$E[Y \mid X=8]=(.02 \times 1+.02 \times 2+.01 \times 3+.01 \times 5) / .06=\frac{.10}{.06}$.
$E[Y]=E[E[Y \mid X]]=E[Y \mid X=1] \operatorname{Pr}[X=1]$

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one. And here is another.
The distribution of one of the variables.
$E[Y \mid X]$?
$E[Y \mid X=1]=(.03 \times 1+.2 \times 2+.21 \times 3+.02 \times 5) / .44=\frac{1.16}{44}$.
$E[Y \mid X=2]=(.05 \times 1+.01 \times 2+.06 \times 3+.2 \times 5) / .32=\frac{1.25}{.32}$.
$E[Y \mid X=4]=(.1 \times 1+.03 \times 2+.03 \times 3+.02 \times 5) / .18=\frac{.35}{18}$.
$E[Y \mid X=8]=(.02 \times 1+.02 \times 2+.01 \times 3+.01 \times 5) / .06=\frac{.10}{.06}$.
$E[Y]=E[E[Y \mid X]]=E[Y \mid X=1] \operatorname{Pr}[X=1]+E[Y \mid X=2] \operatorname{Pr}[X=2]$

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one. And here is another.
The distribution of one of the variables.
$E[Y \mid X]$?
$E[Y \mid X=1]=(.03 \times 1+.2 \times 2+.21 \times 3+.02 \times 5) / .44=\frac{1.16}{44}$.
$E[Y \mid X=2]=(.05 \times 1+.01 \times 2+.06 \times 3+.2 \times 5) / .32=\frac{1.25}{.32}$.
$E[Y \mid X=4]=(.1 \times 1+.03 \times 2+.03 \times 3+.02 \times 5) / .18=\frac{.35}{18}$.
$E[Y \mid X=8]=(.02 \times 1+.02 \times 2+.01 \times 3+.01 \times 5) / .06=\frac{.10}{.06}$.
$E[Y]=E[E[Y \mid X]]=E[Y \mid X=1] \operatorname{Pr}[X=1]+E[Y \mid X=2] \operatorname{Pr}[X=2]+\cdots$

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one. And here is another.
The distribution of one of the variables.
$E[Y \mid X]$?
$E[Y \mid X=1]=(.03 \times 1+.2 \times 2+.21 \times 3+.02 \times 5) / .44=\frac{1.16}{44}$.
$E[Y \mid X=2]=(.05 \times 1+.01 \times 2+.06 \times 3+.2 \times 5) / .32=\frac{1.25}{.32}$.
$E[Y \mid X=4]=(.1 \times 1+.03 \times 2+.03 \times 3+.02 \times 5) / .18=\frac{.35}{18}$.
$E[Y \mid X=8]=(.02 \times 1+.02 \times 2+.01 \times 3+.01 \times 5) / .06=\frac{.10}{.06}$.
$E[Y]=E[E[Y \mid X]]=E[Y \mid X=1] \operatorname{Pr}[X=1]+E[Y \mid X=2] \operatorname{Pr}[X=2]+\cdots$
$E[Y]=(1.16+1.25+.35+.10)=2.86$.

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one. And here is another.
The distribution of one of the variables.
$E[Y \mid X]$?
$E[Y \mid X=1]=(.03 \times 1+.2 \times 2+.21 \times 3+.02 \times 5) / .44=\frac{1.16}{44}$.
$E[Y \mid X=2]=(.05 \times 1+.01 \times 2+.06 \times 3+.2 \times 5) / .32=\frac{1.25}{.32}$.
$E[Y \mid X=4]=(.1 \times 1+.03 \times 2+.03 \times 3+.02 \times 5) / .18=\frac{.35}{18}$.
$E[Y \mid X=8]=(.02 \times 1+.02 \times 2+.01 \times 3+.01 \times 5) / .06=\frac{.10}{.06}$.
$E[Y]=E[E[Y \mid X]]=E[Y \mid X=1] \operatorname{Pr}[X=1]+E[Y \mid X=2] \operatorname{Pr}[X=2]+\cdots$
$E[Y]=(1.16+1.25+.35+.10)=2.86$.

Joint distribution.

Y / X	1	2	4	8	
1	.03	.05	.1	.02	.20
2	.2	.01	.03	.02	.26
3	.21	.06	.03	.01	.31
5	.02	.2	.02	.01	.25
	.44	.32	.18	.06	

Marginal Distribution? Here is one. And here is another.
The distribution of one of the variables.
$E[Y \mid X]$?
$E[Y \mid X=1]=(.03 \times 1+.2 \times 2+.21 \times 3+.02 \times 5) / .44=\frac{1.16}{44}$.
$E[Y \mid X=2]=(.05 \times 1+.01 \times 2+.06 \times 3+.2 \times 5) / .32=\frac{1.25}{.32}$.
$E[Y \mid X=4]=(.1 \times 1+.03 \times 2+.03 \times 3+.02 \times 5) / .18=\frac{.35}{18}$.
$E[Y \mid X=8]=(.02 \times 1+.02 \times 2+.01 \times 3+.01 \times 5) / .06=\frac{.10}{.06}$.
$E[Y]=E[E[Y \mid X]]=E[Y \mid X=1] \operatorname{Pr}[X=1]+E[Y \mid X=2] \operatorname{Pr}[X=2]+\cdots$
$E[Y]=(1.16+1.25+.35+.10)=2.86$.

Multiple Continuous Random Variables

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying $f_{X, Y}(x, y)$ for $x, y \in \mathfrak{R}$

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying $f_{X, Y}(x, y)$ for $x, y \in \Re$ where

$$
f_{X, Y}(x, y) d x d y=\operatorname{Pr}[X \in(x, x+d x), Y \in(y+d y)]
$$

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying $f_{X, Y}(x, y)$ for $x, y \in \Re$ where

$$
f_{X, Y}(x, y) d x d y=\operatorname{Pr}[X \in(x, x+d x), Y \in(y+d y)]
$$

The function $f_{X, Y}(x, y)$ is called the

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying $f_{X, Y}(x, y)$ for $x, y \in \mathfrak{R}$ where

$$
f_{X, Y}(x, y) d x d y=\operatorname{Pr}[X \in(x, x+d x), Y \in(y+d y)]
$$

The function $f_{X, Y}(x, y)$ is called the joint pdf of X and Y.

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying $f_{X, Y}(x, y)$ for $x, y \in \Re$ where

$$
f_{X, Y}(x, y) d x d y=\operatorname{Pr}[X \in(x, x+d x), Y \in(y+d y)]
$$

The function $f_{X, Y}(x, y)$ is called the joint pdf of X and Y.
Example:

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying $f_{X, Y}(x, y)$ for $x, y \in \mathfrak{R}$ where

$$
f_{X, Y}(x, y) d x d y=\operatorname{Pr}[X \in(x, x+d x), Y \in(y+d y)]
$$

The function $f_{X, Y}(x, y)$ is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set $A \subset \mathfrak{R}^{2}$.

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RV s by specifying $f_{X, Y}(x, y)$ for $x, y \in \mathfrak{R}$ where

$$
f_{X, Y}(x, y) d x d y=\operatorname{Pr}[X \in(x, x+d x), Y \in(y+d y)]
$$

The function $f_{X, Y}(x, y)$ is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set $A \subset \mathfrak{R}^{2}$. Then

$$
f_{X, Y}(x, y)=\frac{1}{|A|} 1\{(x, y) \in A\}
$$

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying $f_{X, Y}(x, y)$ for $x, y \in \mathfrak{R}$ where

$$
f_{X, Y}(x, y) d x d y=\operatorname{Pr}[X \in(x, x+d x), Y \in(y+d y)]
$$

The function $f_{X, Y}(x, y)$ is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set $A \subset \mathfrak{R}^{2}$. Then

$$
f_{X, Y}(x, y)=\frac{1}{|A|} 1\{(x, y) \in A\}
$$

where $|A|$ is the area of A.

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RV by specifying $f_{X, Y}(x, y)$ for $x, y \in \mathfrak{R}$ where

$$
f_{X, Y}(x, y) d x d y=\operatorname{Pr}[X \in(x, x+d x), Y \in(y+d y)]
$$

The function $f_{X, Y}(x, y)$ is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set $A \subset \mathfrak{R}^{2}$. Then

$$
f_{X, Y}(x, y)=\frac{1}{|A|} 1\{(x, y) \in A\}
$$

where $|A|$ is the area of A.
Interpretation.

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RV by specifying $f_{X, Y}(x, y)$ for $x, y \in \Re$ where

$$
f_{X, Y}(x, y) d x d y=\operatorname{Pr}[X \in(x, x+d x), Y \in(y+d y)]
$$

The function $f_{X, Y}(x, y)$ is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set $A \subset \mathfrak{R}^{2}$. Then

$$
f_{X, Y}(x, y)=\frac{1}{|A|} 1\{(x, y) \in A\}
$$

where $|A|$ is the area of A.
Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RV by specifying $f_{X, Y}(x, y)$ for $x, y \in \mathfrak{R}$ where

$$
f_{X, Y}(x, y) d x d y=\operatorname{Pr}[X \in(x, x+d x), Y \in(y+d y)]
$$

The function $f_{X, Y}(x, y)$ is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set $A \subset \mathfrak{R}^{2}$. Then

$$
f_{X, Y}(x, y)=\frac{1}{|A|} 1\{(x, y) \in A\}
$$

where $|A|$ is the area of A.
Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $\operatorname{Pr}[X=m \varepsilon, Y=n \varepsilon]=f_{X, Y}(m \varepsilon, n \varepsilon) \varepsilon^{2}$.

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying $f_{X, Y}(x, y)$ for $x, y \in \Re$ where

$$
f_{X, Y}(x, y) d x d y=\operatorname{Pr}[X \in(x, x+d x), Y \in(y+d y)]
$$

The function $f_{X, Y}(x, y)$ is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set $A \subset \mathfrak{R}^{2}$. Then

$$
f_{X, Y}(x, y)=\frac{1}{|A|} 1\{(x, y) \in A\}
$$

where $|A|$ is the area of A.
Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $\operatorname{Pr}[X=m \varepsilon, Y=n \varepsilon]=f_{X, Y}(m \varepsilon, n \varepsilon) \varepsilon^{2}$.

Extension:

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying $f_{X, Y}(x, y)$ for $x, y \in \Re$ where

$$
f_{X, Y}(x, y) d x d y=\operatorname{Pr}[X \in(x, x+d x), Y \in(y+d y)]
$$

The function $f_{X, Y}(x, y)$ is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set $A \subset \mathfrak{R}^{2}$. Then

$$
f_{X, Y}(x, y)=\frac{1}{|A|} 1\{(x, y) \in A\}
$$

where $|A|$ is the area of A.
Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $\operatorname{Pr}[X=m \varepsilon, Y=n \varepsilon]=f_{X, Y}(m \varepsilon, n \varepsilon) \varepsilon^{2}$.
Extension: $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ with $f_{\mathbf{X}}(\mathbf{x})$.

Example of Continuous (X, Y)

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$\Longrightarrow f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\}$.

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$\Longrightarrow f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\}$.
Some events!

$$
\operatorname{Pr}[X>0, Y>0]=
$$

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$\Longrightarrow f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\}$.
Some events!

$$
\operatorname{Pr}[X>0, Y>0]=\frac{1}{4}
$$

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$\Longrightarrow f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\}$.
Some events!

$$
\begin{aligned}
& \operatorname{Pr}[X>0, Y>0]=\frac{1}{4} \\
& \operatorname{Pr}[X<0, Y>0]=
\end{aligned}
$$

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$\Longrightarrow f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\}$.
Some events!

$$
\begin{aligned}
& \operatorname{Pr}[X>0, Y>0]=\frac{1}{4} \\
& \operatorname{Pr}[X<0, Y>0]=\frac{1}{4}
\end{aligned}
$$

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$\Longrightarrow f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\}$.
Some events!

$$
\begin{aligned}
& \operatorname{Pr}[X>0, Y>0]=\frac{1}{4} \\
& \operatorname{Pr}[X<0, Y>0]=\frac{1}{4} \\
& \operatorname{Pr}\left[X^{2}+Y^{2} \leq r^{2}\right]=
\end{aligned}
$$

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$\Longrightarrow f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\}$.
Some events!

$$
\begin{aligned}
& \operatorname{Pr}[X>0, Y>0]=\frac{1}{4} \\
& \operatorname{Pr}[X<0, Y>0]=\frac{1}{4} \\
& \operatorname{Pr}\left[X^{2}+Y^{2} \leq r^{2}\right]=r^{2}
\end{aligned}
$$

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$\Longrightarrow f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\}$.
Some events!

$$
\begin{aligned}
& \operatorname{Pr}[X>0, Y>0]=\frac{1}{4} \\
& \operatorname{Pr}[X<0, Y>0]=\frac{1}{4} \\
& \operatorname{Pr}\left[X^{2}+Y^{2} \leq r^{2}\right]=r^{2} \\
& \operatorname{Pr}[X>Y]=
\end{aligned}
$$

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$\Longrightarrow f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\}$.
Some events!

$$
\begin{aligned}
& \operatorname{Pr}[X>0, Y>0]=\frac{1}{4} \\
& \operatorname{Pr}[X<0, Y>0]=\frac{1}{4} \\
& \operatorname{Pr}\left[X^{2}+Y^{2} \leq r^{2}\right]=r^{2} \\
& \operatorname{Pr}[X>Y]=\frac{1}{2} .
\end{aligned}
$$

Example of Continuous (X, Y)

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$$
f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\} .
$$

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$$
f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\} .
$$

Marginals?

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$$
f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\} .
$$

Marginals?

$$
f_{X}(x)=
$$

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$$
f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\} .
$$

Marginals?

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y
$$

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$$
f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\} .
$$

Marginals?

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\frac{2}{\pi} \sqrt{1-x^{2}}
$$

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$$
f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\} .
$$

Marginals?

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\frac{2}{\pi} \sqrt{1-x^{2}} \\
& f_{Y}(y)=
\end{aligned}
$$

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\}$.
Marginals?

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\frac{2}{\pi} \sqrt{1-x^{2}} \\
& f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x
\end{aligned}
$$

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

$f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\}$.
Marginals?

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\frac{2}{\pi} \sqrt{1-x^{2}} \\
& f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x=\frac{2}{\pi} \sqrt{1-y^{2}}
\end{aligned}
$$

$\operatorname{Expo}(\lambda)$

The exponential distribution with parameter $\lambda>0$ is defined by

$\operatorname{Expo}(\lambda)$

The exponential distribution with parameter $\lambda>0$ is defined by

$$
f_{X}(x)=\lambda e^{-\lambda x} 1\{x \geq 0\}
$$

$\operatorname{Expo}(\lambda)$

The exponential distribution with parameter $\lambda>0$ is defined by

$$
\begin{gathered}
f_{X}(x)=\lambda e^{-\lambda x} 1\{x \geq 0\} \\
F_{X}(x)= \begin{cases}0, & \text { if } x<0 \\
1-e^{-\lambda x}, & \text { if } x \geq 0\end{cases}
\end{gathered}
$$

$\operatorname{Expo}(\lambda)$

The exponential distribution with parameter $\lambda>0$ is defined by

$$
\begin{gathered}
f_{X}(x)=\lambda e^{-\lambda x} 1\{x \geq 0\} \\
F_{X}(x)= \begin{cases}0, & \text { if } x<0 \\
1-e^{-\lambda x}, & \text { if } x \geq 0\end{cases}
\end{gathered}
$$

Note that $\operatorname{Pr}[X>t]=e^{-\lambda t}$ for $t>0$.

Some Properties

Some Properties

1. Expo is memoryless.

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$.

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\operatorname{Pr}[X>t+s \mid X>s]=
$$

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\operatorname{Pr}[X>t+s \mid X>s]=\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]}
$$

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>t+s \mid X>s] & =\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=
\end{aligned}
$$

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>t+s \mid X>s] & =\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t}
\end{aligned}
$$

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>t+s \mid X>s] & =\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t} \\
& =\operatorname{Pr}[X>t]
\end{aligned}
$$

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>t+s \mid X>s] & =\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t} \\
& =\operatorname{Pr}[X>t]
\end{aligned}
$$

'Used is a good as new.'

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>t+s \mid X>s] & =\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t} \\
& =\operatorname{Pr}[X>t]
\end{aligned}
$$

'Used is a good as new.'
2. Scaling Expo.

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>t+s \mid X>s] & =\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t} \\
& =\operatorname{Pr}[X>t] .
\end{aligned}
$$

'Used is a good as new.'
2. Scaling Expo. Let $X=\operatorname{Expo}(\lambda)$ and $Y=a X$ for some $a>0$.

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>t+s \mid X>s] & =\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t} \\
& =\operatorname{Pr}[X>t] .
\end{aligned}
$$

'Used is a good as new.'
2. Scaling Expo. Let $X=\operatorname{Expo}(\lambda)$ and $Y=a X$ for some $a>0$. Then

$$
\operatorname{Pr}[Y>t]=
$$

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>t+s \mid X>s] & =\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t} \\
& =\operatorname{Pr}[X>t] .
\end{aligned}
$$

'Used is a good as new.'
2. Scaling Expo. Let $X=\operatorname{Expo}(\lambda)$ and $Y=a X$ for some $a>0$. Then

$$
\operatorname{Pr}[Y>t]=\operatorname{Pr}[a X>t]=
$$

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>t+s \mid X>s] & =\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t} \\
& =\operatorname{Pr}[X>t] .
\end{aligned}
$$

'Used is a good as new.'
2. Scaling Expo. Let $X=\operatorname{Expo}(\lambda)$ and $Y=a X$ for some $a>0$. Then

$$
\operatorname{Pr}[Y>t]=\operatorname{Pr}[a X>t]=\operatorname{Pr}[X>t / a]
$$

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>t+s \mid X>s] & =\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t} \\
& =\operatorname{Pr}[X>t] .
\end{aligned}
$$

'Used is a good as new.'
2. Scaling Expo. Let $X=\operatorname{Expo}(\lambda)$ and $Y=a X$ for some $a>0$. Then

$$
\begin{aligned}
\operatorname{Pr}[Y>t] & =\operatorname{Pr}[a X>t]=\operatorname{Pr}[X>t / a] \\
& =e^{-\lambda(t / a)}=e^{-(\lambda / a) t}=
\end{aligned}
$$

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>t+s \mid X>s] & =\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t} \\
& =\operatorname{Pr}[X>t] .
\end{aligned}
$$

'Used is a good as new.'
2. Scaling Expo. Let $X=\operatorname{Expo}(\lambda)$ and $Y=a X$ for some $a>0$. Then

$$
\begin{aligned}
\operatorname{Pr}[Y>t] & =\operatorname{Pr}[a X>t]=\operatorname{Pr}[X>t / a] \\
& =e^{-\lambda(t / a)}=e^{-(\lambda / a) t}=\operatorname{Pr}[Z>t] \text { for } Z=\operatorname{Expo}(\lambda / a) .
\end{aligned}
$$

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>t+s \mid X>s] & =\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t} \\
& =\operatorname{Pr}[X>t] .
\end{aligned}
$$

'Used is a good as new.'
2. Scaling Expo. Let $X=\operatorname{Expo}(\lambda)$ and $Y=a X$ for some $a>0$. Then

$$
\begin{aligned}
\operatorname{Pr}[Y>t] & =\operatorname{Pr}[a X>t]=\operatorname{Pr}[X>t / a] \\
& =e^{-\lambda(t / a)}=e^{-(\lambda / a) t}=\operatorname{Pr}[Z>t] \text { for } Z=\operatorname{Expo}(\lambda / a) .
\end{aligned}
$$

Thus, $a \times \operatorname{Expo}(\lambda)=\operatorname{Expo}(\lambda / a)$.

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>t+s \mid X>s] & =\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t} \\
& =\operatorname{Pr}[X>t] .
\end{aligned}
$$

'Used is a good as new.'
2. Scaling Expo. Let $X=\operatorname{Expo}(\lambda)$ and $Y=a X$ for some $a>0$. Then

$$
\begin{aligned}
\operatorname{Pr}[Y>t] & =\operatorname{Pr}[a X>t]=\operatorname{Pr}[X>t / a] \\
& =e^{-\lambda(t / a)}=e^{-(\lambda / a) t}=\operatorname{Pr}[Z>t] \text { for } Z=\operatorname{Expo}(\lambda / a) .
\end{aligned}
$$

Thus, $a \times \operatorname{Expo}(\lambda)=\operatorname{Expo}(\lambda / a)$.
Also, $\operatorname{Expo}(\lambda)=\frac{1}{\lambda} \operatorname{Expo}(1)$.

More Properties

More Properties

3. Scaling Uniform.

More Properties

3. Scaling Uniform. Let $X=U[0,1]$ and $Y=a+b X$ where $b>0$.

More Properties

3. Scaling Uniform. Let $X=U[0,1]$ and $Y=a+b X$ where $b>0$. Then,

$$
\operatorname{Pr}[Y \in(y, y+\delta)]=\operatorname{Pr}[a+b X \in(y, y+\delta)]=
$$

More Properties

3. Scaling Uniform. Let $X=U[0,1]$ and $Y=a+b X$ where $b>0$. Then,

$$
\operatorname{Pr}[Y \in(y, y+\delta)]=\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right]
$$

More Properties

3. Scaling Uniform. Let $X=U[0,1]$ and $Y=a+b X$ where $b>0$.

Then,

$$
\begin{aligned}
\operatorname{Pr}[Y \in(y, y+\delta)] & =\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right] \\
& =\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=
\end{aligned}
$$

More Properties

3. Scaling Uniform. Let $X=U[0,1]$ and $Y=a+b X$ where $b>0$.

Then,

$$
\begin{aligned}
\operatorname{Pr}[Y \in(y, y+\delta)] & =\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right] \\
& =\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=\frac{1}{b} \delta, \text { for }
\end{aligned}
$$

More Properties

3. Scaling Uniform. Let $X=U[0,1]$ and $Y=a+b X$ where $b>0$.

Then,

$$
\begin{aligned}
\operatorname{Pr}[Y \in(y, y+\delta)] & =\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right] \\
& =\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=\frac{1}{b} \delta, \text { for } 0<\frac{y-a}{b}<1
\end{aligned}
$$

More Properties

3. Scaling Uniform. Let $X=U[0,1]$ and $Y=a+b X$ where $b>0$.

Then,

$$
\begin{aligned}
\operatorname{Pr}[Y \in(y, y+\delta)] & =\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right] \\
& =\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=\frac{1}{b} \delta, \text { for } 0<\frac{y-a}{b}<1 \\
& =\frac{1}{b} \delta, \text { for } a<y<a+b .
\end{aligned}
$$

More Properties

3. Scaling Uniform. Let $X=U[0,1]$ and $Y=a+b X$ where $b>0$.

Then,

$$
\begin{aligned}
\operatorname{Pr}[Y \in(y, y+\delta)] & =\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right] \\
& =\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=\frac{1}{b} \delta, \text { for } 0<\frac{y-a}{b}<1 \\
& =\frac{1}{b} \delta, \text { for } a<y<a+b .
\end{aligned}
$$

Thus, $f_{Y}(y)=\frac{1}{b}$ for $a<y<a+b$.

More Properties

3. Scaling Uniform. Let $X=U[0,1]$ and $Y=a+b X$ where $b>0$.

Then,

$$
\begin{aligned}
\operatorname{Pr}[Y \in(y, y+\delta)] & =\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right] \\
& =\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=\frac{1}{b} \delta, \text { for } 0<\frac{y-a}{b}<1 \\
& =\frac{1}{b} \delta, \text { for } a<y<a+b .
\end{aligned}
$$

Thus, $f_{Y}(y)=\frac{1}{b}$ for $a<y<a+b$. Hence, $Y=U[a, a+b]$.

More Properties

3. Scaling Uniform. Let $X=U[0,1]$ and $Y=a+b X$ where $b>0$.

Then,

$$
\begin{aligned}
\operatorname{Pr}[Y \in(y, y+\delta)] & =\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right] \\
& =\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=\frac{1}{b} \delta, \text { for } 0<\frac{y-a}{b}<1 \\
& =\frac{1}{b} \delta, \text { for } a<y<a+b .
\end{aligned}
$$

Thus, $f_{Y}(y)=\frac{1}{b}$ for $a<y<a+b$. Hence, $Y=U[a, a+b]$.

Replacing b by $b-a$ we see that, if $X=U[0,1]$, then $Y=a+(b-a) X$ is $U[a, b]$.

Some More Properties

Some More Properties

4. Scaling pdf.

Some More Properties

4. Scaling pdf. Let $f_{X}(x)$ be the pdf of X and $Y=a+b X$ where $b>0$.

Some More Properties

4. Scaling pdf. Let $f_{X}(x)$ be the pdf of X and $Y=a+b X$ where $b>0$. Then

$$
\operatorname{Pr}[Y \in(y, y+\delta)]=\operatorname{Pr}[a+b X \in(y, y+\delta)]=
$$

Some More Properties

4. Scaling pdf. Let $f_{X}(x)$ be the pdf of X and $Y=a+b X$ where $b>0$. Then

$$
\operatorname{Pr}[Y \in(y, y+\delta)]=\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right]
$$

Some More Properties

4. Scaling pdf. Let $f_{X}(x)$ be the pdf of X and $Y=a+b X$ where $b>0$. Then

$$
\begin{aligned}
\operatorname{Pr}[Y \in(y, y+\delta)] & =\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right] \\
& =\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=
\end{aligned}
$$

Some More Properties

4. Scaling pdf. Let $f_{X}(x)$ be the pdf of X and $Y=a+b X$ where $b>0$. Then

$$
\begin{aligned}
\operatorname{Pr}[Y \in(y, y+\delta)] & =\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right] \\
& =\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=f_{X}\left(\frac{y-a}{b}\right) \frac{\delta}{b}
\end{aligned}
$$

Some More Properties

4. Scaling pdf. Let $f_{X}(x)$ be the pdf of X and $Y=a+b X$ where $b>0$. Then

$$
\begin{aligned}
\operatorname{Pr}[Y \in(y, y+\delta)] & =\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right] \\
& =\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=f_{X}\left(\frac{y-a}{b}\right) \frac{\delta}{b}
\end{aligned}
$$

Now, the left-hand side is

Some More Properties

4. Scaling pdf. Let $f_{X}(x)$ be the pdf of X and $Y=a+b X$ where $b>0$. Then

$$
\begin{aligned}
\operatorname{Pr}[Y \in(y, y+\delta)] & =\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right] \\
& =\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=f_{X}\left(\frac{y-a}{b}\right) \frac{\delta}{b}
\end{aligned}
$$

Now, the left-hand side is $f_{Y}(y) \delta$.

Some More Properties

4. Scaling pdf. Let $f_{X}(x)$ be the pdf of X and $Y=a+b X$ where $b>0$. Then

$$
\begin{aligned}
\operatorname{Pr}[Y \in(y, y+\delta)] & =\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right] \\
& =\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=f_{X}\left(\frac{y-a}{b}\right) \frac{\delta}{b}
\end{aligned}
$$

Now, the left-hand side is $f_{Y}(y) \delta$. Hence,

$$
f_{Y}(y)=\frac{1}{b} f_{X}\left(\frac{y-a}{b}\right) .
$$

Some More Properties

4. Scaling pdf. Let $f_{X}(x)$ be the pdf of X and $Y=a+b X$ where $b>0$. Then

$$
\begin{aligned}
\operatorname{Pr}[Y \in(y, y+\delta)] & =\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right] \\
& =\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=f_{X}\left(\frac{y-a}{b}\right) \frac{\delta}{b}
\end{aligned}
$$

Now, the left-hand side is $f_{Y}(y) \delta$. Hence,

$$
f_{Y}(y)=\frac{1}{b} f_{X}\left(\frac{y-a}{b}\right) .
$$

Expectation

Definition:

Expectation

Definition: The expectation of a random variable X with pdf $f(x)$ is defined as

Expectation

Definition: The expectation of a random variable X with pdf $f(x)$ is defined as

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Expectation

Definition: The expectation of a random variable X with pdf $f(x)$ is defined as

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Justification:

Expectation

Definition: The expectation of a random variable X with $\operatorname{pdf} f(x)$ is defined as

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Justification: Say $X=n \delta$ w.p. $f_{X}(n \delta) \delta$ for $n \in \mathbb{Z}$.

Expectation

Definition: The expectation of a random variable X with $\operatorname{pdf} f(x)$ is defined as

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Justification: Say $X=n \delta$ w.p. $f_{X}(n \delta) \delta$ for $n \in \mathbb{Z}$. Then,

$$
E[X]=\sum_{n}(n \delta) \operatorname{Pr}[X=n \delta]
$$

Expectation

Definition: The expectation of a random variable X with $\operatorname{pdf} f(x)$ is defined as

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Justification: Say $X=n \delta$ w.p. $f_{X}(n \delta) \delta$ for $n \in \mathbb{Z}$. Then,

$$
E[X]=\sum_{n}(n \delta) \operatorname{Pr}[X=n \delta]=\sum_{n}(n \delta) f_{X}(n \delta) \delta
$$

Expectation

Definition: The expectation of a random variable X with $\operatorname{pdf} f(x)$ is defined as

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Justification: Say $X=n \delta$ w.p. $f_{X}(n \delta) \delta$ for $n \in \mathbb{Z}$. Then,

$$
E[X]=\sum_{n}(n \delta) \operatorname{Pr}[X=n \delta]=\sum_{n}(n \delta) f_{X}(n \delta) \delta=\int_{-\infty}^{\infty} x f_{X}(x) d x .
$$

Expectation

Definition: The expectation of a random variable X with $\operatorname{pdf} f(x)$ is defined as

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Justification: Say $X=n \delta$ w.p. $f_{X}(n \delta) \delta$ for $n \in \mathbb{Z}$. Then,

$$
E[X]=\sum_{n}(n \delta) \operatorname{Pr}[X=n \delta]=\sum_{n}(n \delta) f_{X}(n \delta) \delta=\int_{-\infty}^{\infty} x f_{X}(x) d x .
$$

Indeed, for any g, one has $\int g(x) d x \approx \sum_{n} g(n \delta) \delta$.

Expectation

Definition: The expectation of a random variable X with $\operatorname{pdf} f(x)$ is defined as

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Justification: Say $X=n \delta$ w.p. $f_{X}(n \delta) \delta$ for $n \in \mathbb{Z}$. Then,

$$
E[X]=\sum_{n}(n \delta) \operatorname{Pr}[X=n \delta]=\sum_{n}(n \delta) f_{X}(n \delta) \delta=\int_{-\infty}^{\infty} x f_{X}(x) d x .
$$

Indeed, for any g, one has $\int g(x) d x \approx \sum_{n} g(n \delta) \delta$. Choose $g(x)=x f_{X}(x)$.

Expectation

Definition: The expectation of a random variable X with $\operatorname{pdf} f(x)$ is defined as

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Justification: Say $X=n \delta$ w.p. $f_{X}(n \delta) \delta$ for $n \in \mathbb{Z}$. Then,

$$
E[X]=\sum_{n}(n \delta) \operatorname{Pr}[X=n \delta]=\sum_{n}(n \delta) f_{X}(n \delta) \delta=\int_{-\infty}^{\infty} x f_{X}(x) d x .
$$

Indeed, for any g, one has $\int g(x) d x \approx \sum_{n} g(n \delta) \delta$. Choose $g(x)=x f_{X}(x)$.

Examples of Expectation

Examples of Expectation

1. $X=U[0,1]$.

Examples of Expectation

1. $X=U[0,1]$. Then, $f_{X}(x)=$

Examples of Expectation

1. $X=U[0,1]$. Then, $f_{X}(x)=1\{0 \leq x \leq 1\}$.

Examples of Expectation

1. $X=U[0,1]$. Then, $f_{X}(x)=1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Examples of Expectation

1. $X=U[0,1]$. Then, $f_{X}(x)=1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x .1 d x=
$$

Examples of Expectation

1. $X=U[0,1]$. Then, $f_{X}(x)=1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x .1 d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}=
$$

Examples of Expectation

1. $X=U[0,1]$. Then, $f_{X}(x)=1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x .1 d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{2} .
$$

Examples of Expectation

1. $X=U[0,1]$. Then, $f_{X}(x)=1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x .1 d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{2} .
$$

2. $X=$ distance to 0 of dart shot uniformly in unit circle.

Examples of Expectation

1. $X=U[0,1]$. Then, $f_{X}(x)=1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x .1 d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{2} .
$$

2. $X=$ distance to 0 of dart shot uniformly in unit circle. Then $f_{X}(x)=2 \times 1\{0 \leq x \leq 1\}$.

Examples of Expectation

1. $X=U[0,1]$. Then, $f_{X}(x)=1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x .1 d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{2} .
$$

2. $X=$ distance to 0 of dart shot uniformly in unit circle. Then $f_{X}(x)=2 \times 1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Examples of Expectation

1. $X=U[0,1]$. Then, $f_{X}(x)=1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x .1 d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{2} .
$$

2. $X=$ distance to 0 of dart shot uniformly in unit circle. Then $f_{X}(x)=2 \times 1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x \cdot 2 x d x=
$$

Examples of Expectation

1. $X=U[0,1]$. Then, $f_{X}(x)=1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x .1 d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{2} .
$$

2. $X=$ distance to 0 of dart shot uniformly in unit circle. Then $f_{X}(x)=2 \times 1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x \cdot 2 x d x=\left[\frac{2 x^{3}}{3}\right]_{0}^{1}=
$$

Examples of Expectation

1. $X=U[0,1]$. Then, $f_{X}(x)=1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x .1 d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{2} .
$$

2. $X=$ distance to 0 of dart shot uniformly in unit circle. Then $f_{X}(x)=2 \times 1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x \cdot 2 x d x=\left[\frac{2 x^{3}}{3}\right]_{0}^{1}=\frac{2}{3} .
$$

Examples of Expectation

Examples of Expectation

3. $X=\operatorname{Expo}(\lambda)$.

Examples of Expectation

3. $X=\operatorname{Expo}(\lambda)$. Then, $f_{X}(x)=\lambda e^{-\lambda x} 1\{x \geq 0\}$.

Examples of Expectation

3. $X=\operatorname{Expo}(\lambda)$. Then, $f_{X}(x)=\lambda e^{-\lambda x} 1\{x \geq 0\}$. Thus,

$$
E[X]=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x
$$

Examples of Expectation

3. $X=\operatorname{Expo}(\lambda)$. Then, $f_{X}(x)=\lambda e^{-\lambda x} 1\{x \geq 0\}$. Thus,

$$
E[X]=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=-\int_{0}^{\infty} x d e^{-\lambda x}
$$

Examples of Expectation

3. $X=\operatorname{Expo}(\lambda)$. Then, $f_{X}(x)=\lambda e^{-\lambda x} 1\{x \geq 0\}$. Thus,

$$
E[X]=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=-\int_{0}^{\infty} x d e^{-\lambda x}
$$

Recall the integration by parts formula:

$$
\int_{a}^{b} u(x) d v(x)=[u(x) v(x)]_{a}^{b}-\int_{a}^{b} v(x) d u(x)
$$

Examples of Expectation

3. $X=\operatorname{Expo}(\lambda)$. Then, $f_{X}(x)=\lambda e^{-\lambda x} 1\{x \geq 0\}$. Thus,

$$
E[X]=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=-\int_{0}^{\infty} x d e^{-\lambda x}
$$

Recall the integration by parts formula:

$$
\begin{aligned}
\int_{a}^{b} u(x) d v(x) & =[u(x) v(x)]_{a}^{b}-\int_{a}^{b} v(x) d u(x) \\
& =u(b) v(b)-u(a) v(a)-\int_{a}^{b} v(x) d u(x)
\end{aligned}
$$

Examples of Expectation

3. $X=\operatorname{Expo}(\lambda)$. Then, $f_{X}(x)=\lambda e^{-\lambda x} 1\{x \geq 0\}$. Thus,

$$
E[X]=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=-\int_{0}^{\infty} x d e^{-\lambda x}
$$

Recall the integration by parts formula:

$$
\begin{aligned}
\int_{a}^{b} u(x) d v(x) & =[u(x) v(x)]_{a}^{b}-\int_{a}^{b} v(x) d u(x) \\
& =u(b) v(b)-u(a) v(a)-\int_{a}^{b} v(x) d u(x) .
\end{aligned}
$$

Thus,

$$
\int_{0}^{\infty} x d e^{-\lambda x}=\left[x e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty} e^{-\lambda x} d x
$$

Examples of Expectation

3. $X=\operatorname{Expo}(\lambda)$. Then, $f_{X}(x)=\lambda e^{-\lambda x} 1\{x \geq 0\}$. Thus,

$$
E[X]=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=-\int_{0}^{\infty} x d e^{-\lambda x}
$$

Recall the integration by parts formula:

$$
\begin{aligned}
\int_{a}^{b} u(x) d v(x) & =[u(x) v(x)]_{a}^{b}-\int_{a}^{b} v(x) d u(x) \\
& =u(b) v(b)-u(a) v(a)-\int_{a}^{b} v(x) d u(x) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\int_{0}^{\infty} x d e^{-\lambda x} & =\left[x e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty} e^{-\lambda x} d x \\
& =0-0+\frac{1}{\lambda} \int_{0}^{\infty} d e^{-\lambda x}=
\end{aligned}
$$

Examples of Expectation

3. $X=\operatorname{Expo}(\lambda)$. Then, $f_{X}(x)=\lambda e^{-\lambda x} 1\{x \geq 0\}$. Thus,

$$
E[X]=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=-\int_{0}^{\infty} x d e^{-\lambda x}
$$

Recall the integration by parts formula:

$$
\begin{aligned}
\int_{a}^{b} u(x) d v(x) & =[u(x) v(x)]_{a}^{b}-\int_{a}^{b} v(x) d u(x) \\
& =u(b) v(b)-u(a) v(a)-\int_{a}^{b} v(x) d u(x) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\int_{0}^{\infty} x d e^{-\lambda x} & =\left[x e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty} e^{-\lambda x} d x \\
& =0-0+\frac{1}{\lambda} \int_{0}^{\infty} d e^{-\lambda x}=-\frac{1}{\lambda}
\end{aligned}
$$

Examples of Expectation

3. $X=\operatorname{Expo}(\lambda)$. Then, $f_{X}(x)=\lambda e^{-\lambda x} 1\{x \geq 0\}$. Thus,

$$
E[X]=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=-\int_{0}^{\infty} x d e^{-\lambda x}
$$

Recall the integration by parts formula:

$$
\begin{aligned}
\int_{a}^{b} u(x) d v(x) & =[u(x) v(x)]_{a}^{b}-\int_{a}^{b} v(x) d u(x) \\
& =u(b) v(b)-u(a) v(a)-\int_{a}^{b} v(x) d u(x) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\int_{0}^{\infty} x d e^{-\lambda x} & =\left[x e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty} e^{-\lambda x} d x \\
& =0-0+\frac{1}{\lambda} \int_{0}^{\infty} d e^{-\lambda x}=-\frac{1}{\lambda}
\end{aligned}
$$

Hence, $E[X]=\frac{1}{\lambda}$.

Independent Continuous Random Variables

Independent Continuous Random Variables

 Definition:
Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B], \forall A, B .
$$

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B], \forall A, B .
$$

Theorem:

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B], \forall A, B .
$$

Theorem: The continuous RVs X and Y are independent if and only if

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B], \forall A, B .
$$

Theorem: The continuous RVs X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B], \forall A, B
$$

Theorem: The continuous RVs X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Proof:

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B], \forall A, B .
$$

Theorem: The continuous RVs X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Proof: As in the discrete case.

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B], \forall A, B .
$$

Theorem: The continuous RVs X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Proof: As in the discrete case.

Definition:

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B], \forall A, B .
$$

Theorem: The continuous RVs X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Proof: As in the discrete case.
Definition: The continuous RVs X_{1}, \ldots, X_{n} are mutually independent if

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B], \forall A, B .
$$

Theorem: The continuous RVs X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Proof: As in the discrete case.
Definition: The continuous RVs X_{1}, \ldots, X_{n} are mutually independent if

$$
\operatorname{Pr}\left[X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right]=\operatorname{Pr}\left[X_{1} \in A_{1}\right] \cdots \operatorname{Pr}\left[X_{n} \in A_{n}\right], \forall A_{1}, \ldots, A_{n} .
$$

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B], \forall A, B .
$$

Theorem: The continuous RVs X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Proof: As in the discrete case.
Definition: The continuous RVs X_{1}, \ldots, X_{n} are mutually independent if

$$
\operatorname{Pr}\left[X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right]=\operatorname{Pr}\left[X_{1} \in A_{1}\right] \cdots \operatorname{Pr}\left[X_{n} \in A_{n}\right], \forall A_{1}, \ldots, A_{n} .
$$

Theorem:

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B], \forall A, B .
$$

Theorem: The continuous RVs X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Proof: As in the discrete case.
Definition: The continuous RVs X_{1}, \ldots, X_{n} are mutually independent if

$$
\operatorname{Pr}\left[X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right]=\operatorname{Pr}\left[X_{1} \in A_{1}\right] \cdots \operatorname{Pr}\left[X_{n} \in A_{n}\right], \forall A_{1}, \ldots, A_{n} .
$$

Theorem: The continuous RVs X_{1}, \ldots, X_{n} are mutually independent if and only if

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B], \forall A, B .
$$

Theorem: The continuous RVs X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Proof: As in the discrete case.
Definition: The continuous RVs X_{1}, \ldots, X_{n} are mutually independent if

$$
\operatorname{Pr}\left[X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right]=\operatorname{Pr}\left[X_{1} \in A_{1}\right] \cdots \operatorname{Pr}\left[X_{n} \in A_{n}\right], \forall A_{1}, \ldots, A_{n} .
$$

Theorem: The continuous RVs X_{1}, \ldots, X_{n} are mutually independent if and only if

$$
f_{\mathbf{x}}\left(x_{1}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right) .
$$

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B], \forall A, B .
$$

Theorem: The continuous RVs X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Proof: As in the discrete case.
Definition: The continuous RVs X_{1}, \ldots, X_{n} are mutually independent if

$$
\operatorname{Pr}\left[X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right]=\operatorname{Pr}\left[X_{1} \in A_{1}\right] \cdots \operatorname{Pr}\left[X_{n} \in A_{n}\right], \forall A_{1}, \ldots, A_{n} .
$$

Theorem: The continuous RVs X_{1}, \ldots, X_{n} are mutually independent if and only if

$$
f_{\mathbf{x}}\left(x_{1}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right) .
$$

Proof:

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B], \forall A, B .
$$

Theorem: The continuous RVs X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Proof: As in the discrete case.
Definition: The continuous RVs X_{1}, \ldots, X_{n} are mutually independent if

$$
\operatorname{Pr}\left[X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right]=\operatorname{Pr}\left[X_{1} \in A_{1}\right] \cdots \operatorname{Pr}\left[X_{n} \in A_{n}\right], \forall A_{1}, \ldots, A_{n} .
$$

Theorem: The continuous RVs X_{1}, \ldots, X_{n} are mutually independent if and only if

$$
f_{\mathbf{x}}\left(x_{1}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right) .
$$

Proof: As in the discrete case.

Meeting at a Restaurant

Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random between noon and 1 pm.

Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random between noon and 1 pm.
They agree they will wait for 10 minutes.

Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random between noon and 1 pm.
They agree they will wait for 10 minutes. What is the probability they meet?

Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random between noon and 1 pm.
They agree they will wait for 10 minutes. What is the probability they meet?

Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random between noon and 1 pm.
They agree they will wait for 10 minutes. What is the probability they meet?

Here, (X, Y) are the times when the friends reach the restaurant.

Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random between noon and 1 pm.
They agree they will wait for 10 minutes. What is the probability they meet?

Here, (X, Y) are the times when the friends reach the restaurant.

The shaded area are the pairs where $|X-Y|<1 / 6$,

Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random between noon and 1 pm.
They agree they will wait for 10 minutes. What is the probability they meet?

Here, (X, Y) are the times when the friends reach the restaurant.

The shaded area are the pairs where $|X-Y|<1 / 6$, i.e., such that they meet.

Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random between noon and 1 pm.
They agree they will wait for 10 minutes. What is the probability they meet?

Here, (X, Y) are the times when the friends reach the restaurant.

The shaded area are the pairs where $|X-Y|<1 / 6$, i.e., such that they meet.

The complement is the sum of two rectangles.

Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random between noon and 1 pm.
They agree they will wait for 10 minutes. What is the probability they meet?

Here, (X, Y) are the times when the friends reach the restaurant.

The shaded area are the pairs where $|X-Y|<1 / 6$, i.e., such that they meet.

The complement is the sum of two rectangles. When you put them together, they form a square

Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random between noon and 1 pm.
They agree they will wait for 10 minutes. What is the probability they meet?

Here, (X, Y) are the times when the friends reach the restaurant.

The shaded area are the pairs where $|X-Y|<1 / 6$, i.e., such that they meet.

The complement is the sum of two rectangles. When you put them together, they form a square with sides $5 / 6$.

Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random between noon and 1 pm.
They agree they will wait for 10 minutes. What is the probability they meet?

Here, (X, Y) are the times when the friends reach the restaurant.

The shaded area are the pairs where $|X-Y|<1 / 6$, i.e., such that they meet.

The complement is the sum of two rectangles. When you put them together, they form a square with sides $5 / 6$.

Thus, $\operatorname{Pr}[$ meet $]=1-\left(\frac{5}{6}\right)^{2}=$

Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random between noon and 1 pm.
They agree they will wait for 10 minutes. What is the probability they meet?

Here, (X, Y) are the times when the friends reach the restaurant.

The shaded area are the pairs where $|X-Y|<1 / 6$, i.e., such that they meet.

The complement is the sum of two rectangles. When you put them together, they form a square with sides $5 / 6$.

Thus, $\operatorname{Pr}[$ meet $]=1-\left(\frac{5}{6}\right)^{2}=\frac{11}{36}$.

Breaking a Stick

Breaking a Stick

You break a stick at two points chosen independently uniformly at random.

Breaking a Stick

You break a stick at two points chosen independently uniformly at random.
What is the probability you can make a triangle with the three pieces?

Breaking a Stick

You break a stick at two points chosen independently uniformly at random.
What is the probability you can make a triangle with the three pieces?

Breaking a Stick

You break a stick at two points chosen independently uniformly at random.
What is the probability you can make a triangle with the three pieces?

Let X, Y be the two break points along the [0,1] stick.

Breaking a Stick

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?

Let X, Y be the two break points along the [0,1] stick.
A triangle if
$A<B+C, B<A+C$, and $C<A+B$.

Breaking a Stick

You break a stick at two points chosen independently uniformly at random.
What is the probability you can make a triangle with the three pieces?

Let X, Y be the two break points along the [0,1] stick.
A triangle if
$A<B+C, B<A+C$, and $C<A+B$.
If $X<Y$, this means
$X<0.5$,

Breaking a Stick

You break a stick at two points chosen independently uniformly at random.
What is the probability you can make a triangle with the three pieces?

Let X, Y be the two break points along the [0,1] stick.
A triangle if
$A<B+C, B<A+C$, and $C<A+B$.
If $X<Y$, this means
$X<0.5, Y<X+.5$,

Breaking a Stick

You break a stick at two points chosen independently uniformly at random.
What is the probability you can make a triangle with the three pieces?

Let X, Y be the two break points along the [0,1] stick.
A triangle if
$A<B+C, B<A+C$, and $C<A+B$.
If $X<Y$, this means
$X<0.5, Y<X+.5, Y>0.5$.

Breaking a Stick

You break a stick at two points chosen independently uniformly at random.
What is the probability you can make a triangle with the three pieces?

Let X, Y be the two break points along the [0,1] stick.
A triangle if
$A<B+C, B<A+C$, and $C<A+B$.
If $X<Y$, this means
$X<0.5, Y<X+.5, Y>0.5$.
This is the blue triangle.

Breaking a Stick

You break a stick at two points chosen independently uniformly at random.
What is the probability you can make a triangle with the three pieces?

Let X, Y be the two break points along the [0,1] stick.
A triangle if
$A<B+C, B<A+C$, and $C<A+B$.
If $X<Y$, this means
$X<0.5, Y<X+.5, Y>0.5$.
This is the blue triangle.
If $X>Y$, get red triangle, by symmetry.

Breaking a Stick

You break a stick at two points chosen independently uniformly at random.
What is the probability you can make a triangle with the three pieces?

Let X, Y be the two break points along the [0,1] stick.
A triangle if
$A<B+C, B<A+C$, and $C<A+B$.
If $X<Y$, this means
$X<0.5, Y<X+.5, Y>0.5$.
This is the blue triangle.
If $X>Y$, get red triangle, by symmetry.

Breaking a Stick

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?

Let X, Y be the two break points along the [0,1] stick.
A triangle if
$A<B+C, B<A+C$, and $C<A+B$.
If $X<Y$, this means
$X<0.5, Y<X+.5, Y>0.5$.
This is the blue triangle.
If $X>Y$, get red triangle, by symmetry.

Thus, $\operatorname{Pr}[$ make triangle $]=1 / 4$.

Maximum of Two Exponentials

Maximum of Two Exponentials

Let $X=\operatorname{Expo}(\lambda)$ and $Y=\operatorname{Expo}(\mu)$ be independent.

Maximum of Two Exponentials

Let $X=\operatorname{Expo}(\lambda)$ and $Y=\operatorname{Expo}(\mu)$ be independent.
Define $Z=\max \{X, Y\}$.

Maximum of Two Exponentials

Let $X=\operatorname{Expo}(\lambda)$ and $Y=\operatorname{Expo}(\mu)$ be independent.
Define $Z=\max \{X, Y\}$.
Calculate $E[Z]$.

Maximum of Two Exponentials

Let $X=\operatorname{Expo}(\lambda)$ and $Y=\operatorname{Expo}(\mu)$ be independent.
Define $Z=\max \{X, Y\}$.
Calculate $E[Z]$.
We compute f_{Z}, then integrate.

Maximum of Two Exponentials

Let $X=\operatorname{Expo}(\lambda)$ and $Y=\operatorname{Expo}(\mu)$ be independent.
Define $Z=\max \{X, Y\}$.
Calculate $E[Z]$.
We compute f_{Z}, then integrate.
One has

Maximum of Two Exponentials

Let $X=\operatorname{Expo}(\lambda)$ and $Y=\operatorname{Expo}(\mu)$ be independent.
Define $Z=\max \{X, Y\}$.
Calculate $E[Z]$.
We compute f_{Z}, then integrate.
One has

$$
\operatorname{Pr}[Z<z]=\operatorname{Pr}[X<z, Y<z]
$$

Maximum of Two Exponentials

Let $X=\operatorname{Expo}(\lambda)$ and $Y=\operatorname{Expo}(\mu)$ be independent.
Define $Z=\max \{X, Y\}$.
Calculate $E[Z]$.
We compute f_{Z}, then integrate.
One has

$$
\operatorname{Pr}[Z<z]=\operatorname{Pr}[X<z, Y<z]=\operatorname{Pr}[X<z] \operatorname{Pr}[Y<z]
$$

Maximum of Two Exponentials

Let $X=\operatorname{Expo}(\lambda)$ and $Y=\operatorname{Expo}(\mu)$ be independent.
Define $Z=\max \{X, Y\}$.
Calculate $E[Z]$.
We compute f_{Z}, then integrate.
One has

$$
\begin{aligned}
\operatorname{Pr}[Z<z] & =\operatorname{Pr}[X<z, Y<z]=\operatorname{Pr}[X<z] \operatorname{Pr}[Y<z] \\
& =\left(1-e^{-\lambda z}\right)\left(1-e^{-\mu z}\right)=
\end{aligned}
$$

Maximum of Two Exponentials

Let $X=\operatorname{Expo}(\lambda)$ and $Y=\operatorname{Expo}(\mu)$ be independent.
Define $Z=\max \{X, Y\}$.
Calculate $E[Z]$.
We compute f_{Z}, then integrate.
One has

$$
\begin{aligned}
\operatorname{Pr}[Z<z] & =\operatorname{Pr}[X<z, Y<z]=\operatorname{Pr}[X<z] \operatorname{Pr}[Y<z] \\
& =\left(1-e^{-\lambda z}\right)\left(1-e^{-\mu z}\right)=1-e^{-\lambda z}-e^{-\mu z}+e^{-(\lambda+\mu) z}
\end{aligned}
$$

Maximum of Two Exponentials

Let $X=\operatorname{Expo}(\lambda)$ and $Y=\operatorname{Expo}(\mu)$ be independent.
Define $Z=\max \{X, Y\}$.
Calculate $E[Z]$.
We compute f_{Z}, then integrate.
One has

$$
\begin{aligned}
\operatorname{Pr}[Z<z] & =\operatorname{Pr}[X<z, Y<z]=\operatorname{Pr}[X<z] \operatorname{Pr}[Y<z] \\
& =\left(1-e^{-\lambda z}\right)\left(1-e^{-\mu z}\right)=1-e^{-\lambda z}-e^{-\mu z}+e^{-(\lambda+\mu) z}
\end{aligned}
$$

Thus,

$$
f_{Z}(z)=\lambda e^{-\lambda z}+\mu e^{-\mu z}-(\lambda+\mu) e^{-(\lambda+\mu) z}, \forall z>0 .
$$

Maximum of Two Exponentials

Let $X=\operatorname{Expo}(\lambda)$ and $Y=\operatorname{Expo}(\mu)$ be independent.
Define $Z=\max \{X, Y\}$.
Calculate $E[Z]$.
We compute f_{Z}, then integrate.
One has

$$
\begin{aligned}
\operatorname{Pr}[Z<z] & =\operatorname{Pr}[X<z, Y<z]=\operatorname{Pr}[X<z] \operatorname{Pr}[Y<z] \\
& =\left(1-e^{-\lambda z}\right)\left(1-e^{-\mu z}\right)=1-e^{-\lambda z}-e^{-\mu z}+e^{-(\lambda+\mu) z}
\end{aligned}
$$

Thus,

$$
f_{Z}(z)=\lambda e^{-\lambda z}+\mu e^{-\mu z}-(\lambda+\mu) e^{-(\lambda+\mu) z}, \forall z>0 .
$$

Since, $\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\lambda\left[-\frac{x e^{-\lambda x}}{\lambda}-\frac{e^{-\lambda x}}{\lambda^{2}}\right]_{0}^{\infty}=\frac{1}{\lambda}$.

$$
E[Z]=\int_{0}^{\infty} z f_{Z}(z) d z=
$$

Maximum of Two Exponentials

Let $X=\operatorname{Expo}(\lambda)$ and $Y=\operatorname{Expo}(\mu)$ be independent.
Define $Z=\max \{X, Y\}$.
Calculate $E[Z]$.
We compute f_{Z}, then integrate.
One has

$$
\begin{aligned}
\operatorname{Pr}[Z<z] & =\operatorname{Pr}[X<z, Y<z]=\operatorname{Pr}[X<z] \operatorname{Pr}[Y<z] \\
& =\left(1-e^{-\lambda z}\right)\left(1-e^{-\mu z}\right)=1-e^{-\lambda z}-e^{-\mu z}+e^{-(\lambda+\mu) z}
\end{aligned}
$$

Thus,

$$
f_{Z}(z)=\lambda e^{-\lambda z}+\mu e^{-\mu z}-(\lambda+\mu) e^{-(\lambda+\mu) z}, \forall z>0 .
$$

Since, $\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\lambda\left[-\frac{x e^{-\lambda x}}{\lambda}-\frac{e^{-\lambda x}}{\lambda^{2}}\right]_{0}^{\infty}=\frac{1}{\lambda}$.

$$
E[Z]=\int_{0}^{\infty} z f_{Z}(z) d z=\frac{1}{\lambda}+\frac{1}{\mu}-\frac{1}{\lambda+\mu} .
$$

Maximum of Two Exponentials

Let $X=\operatorname{Expo}(\lambda)$ and $Y=\operatorname{Expo}(\mu)$ be independent.
Define $Z=\max \{X, Y\}$.
Calculate $E[Z]$.
We compute f_{Z}, then integrate.
One has

$$
\begin{aligned}
\operatorname{Pr}[Z<z] & =\operatorname{Pr}[X<z, Y<z]=\operatorname{Pr}[X<z] \operatorname{Pr}[Y<z] \\
& =\left(1-e^{-\lambda z}\right)\left(1-e^{-\mu z}\right)=1-e^{-\lambda z}-e^{-\mu z}+e^{-(\lambda+\mu) z}
\end{aligned}
$$

Thus,

$$
f_{Z}(z)=\lambda e^{-\lambda z}+\mu e^{-\mu z}-(\lambda+\mu) e^{-(\lambda+\mu) z}, \forall z>0 .
$$

Since, $\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\lambda\left[-\frac{x e^{-\lambda x}}{\lambda}-\frac{e^{-\lambda x}}{\lambda^{2}}\right]_{0}^{\infty}=\frac{1}{\lambda}$.

$$
E[Z]=\int_{0}^{\infty} z f_{Z}(z) d z=\frac{1}{\lambda}+\frac{1}{\mu}-\frac{1}{\lambda+\mu} .
$$

Maximum of n i.i.d. Exponentials

Maximum of n i.i.d. Exponentials
Let X_{1}, \ldots, X_{n} be i.i.d. Expo(1).

Maximum of n i.i.d. Exponentials

Let X_{1}, \ldots, X_{n} be i.i.d. Expo(1). Define $Z=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.

Maximum of n i.i.d. Exponentials

Let X_{1}, \ldots, X_{n} be i.i.d. Expo(1). Define $Z=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.
Calculate $E[Z]$.

Maximum of n i.i.d. Exponentials

Let X_{1}, \ldots, X_{n} be i.i.d. Expo(1). Define $Z=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. Calculate $E[Z]$.
We use a recursion.

Maximum of n i.i.d. Exponentials

Let X_{1}, \ldots, X_{n} be i.i.d. Expo(1). Define $Z=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. Calculate $E[Z]$.
We use a recursion. The key idea is as follows:

Maximum of n i.i.d. Exponentials

Let X_{1}, \ldots, X_{n} be i.i.d. Expo(1). Define $Z=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.
Calculate $E[Z]$.
We use a recursion. The key idea is as follows:

$$
Z=\min \left\{X_{1}, \ldots, X_{n}\right\}+V
$$

where V is the maximum of $n-1$ i.i.d. Expo(1).

Maximum of n i.i.d. Exponentials

Let X_{1}, \ldots, X_{n} be i.i.d. Expo(1). Define $Z=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.
Calculate $E[Z]$.
We use a recursion. The key idea is as follows:

$$
Z=\min \left\{X_{1}, \ldots, X_{n}\right\}+V
$$

where V is the maximum of $n-1$ i.i.d. Expo(1). This follows from the memoryless property of the exponential.

Maximum of n i.i.d. Exponentials

Let X_{1}, \ldots, X_{n} be i.i.d. Expo(1). Define $Z=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.
Calculate $E[Z]$.
We use a recursion. The key idea is as follows:

$$
Z=\min \left\{X_{1}, \ldots, X_{n}\right\}+V
$$

where V is the maximum of $n-1$ i.i.d. Expo(1). This follows from the memoryless property of the exponential.
Let then $A_{n}=E[Z]$.

Maximum of n i.i.d. Exponentials

Let X_{1}, \ldots, X_{n} be i.i.d. Expo(1). Define $Z=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.
Calculate $E[Z]$.
We use a recursion. The key idea is as follows:

$$
Z=\min \left\{X_{1}, \ldots, X_{n}\right\}+V
$$

where V is the maximum of $n-1$ i.i.d. Expo(1). This follows from the memoryless property of the exponential.
Let then $A_{n}=E[Z]$. We see that

$$
A_{n}=E\left[\min \left\{X_{1}, \ldots, X_{n}\right\}\right]+A_{n-1}
$$

Maximum of n i.i.d. Exponentials

Let X_{1}, \ldots, X_{n} be i.i.d. Expo(1). Define $Z=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.
Calculate $E[Z]$.
We use a recursion. The key idea is as follows:

$$
Z=\min \left\{X_{1}, \ldots, X_{n}\right\}+V
$$

where V is the maximum of $n-1$ i.i.d. Expo(1). This follows from the memoryless property of the exponential.
Let then $A_{n}=E[Z]$. We see that

$$
\begin{aligned}
A_{n} & =E\left[\min \left\{X_{1}, \ldots, X_{n}\right\}\right]+A_{n-1} \\
& =\frac{1}{n}+A_{n-1}
\end{aligned}
$$

Maximum of n i.i.d. Exponentials

Let X_{1}, \ldots, X_{n} be i.i.d. Expo(1). Define $Z=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.
Calculate $E[Z]$.
We use a recursion. The key idea is as follows:

$$
Z=\min \left\{X_{1}, \ldots, X_{n}\right\}+V
$$

where V is the maximum of $n-1$ i.i.d. Expo(1). This follows from the memoryless property of the exponential.
Let then $A_{n}=E[Z]$. We see that

$$
\begin{aligned}
A_{n} & =E\left[\min \left\{X_{1}, \ldots, X_{n}\right\}\right]+A_{n-1} \\
& =\frac{1}{n}+A_{n-1}
\end{aligned}
$$

because the minimum of Expo is Expo with the sum of the rates.

Maximum of n i.i.d. Exponentials

Let X_{1}, \ldots, X_{n} be i.i.d. Expo(1). Define $Z=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.
Calculate $E[Z]$.
We use a recursion. The key idea is as follows:

$$
Z=\min \left\{X_{1}, \ldots, X_{n}\right\}+V
$$

where V is the maximum of $n-1$ i.i.d. Expo(1). This follows from the memoryless property of the exponential.
Let then $A_{n}=E[Z]$. We see that

$$
\begin{aligned}
A_{n} & =E\left[\min \left\{X_{1}, \ldots, X_{n}\right\}\right]+A_{n-1} \\
& =\frac{1}{n}+A_{n-1}
\end{aligned}
$$

because the minimum of Expo is Expo with the sum of the rates. Hence,

$$
E[Z]=A_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}=H(n)
$$

Quantization Noise

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise.

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?
Model:

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?
Model: $X=U[0,1]$ is the continuous value.

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?
Model: $X=U[0,1]$ is the continuous value. Y is the closest multiple of 2^{-n} to X.

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?
Model: $X=U[0,1]$ is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits.

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?
Model: $X=U[0,1]$ is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is $Z:=X-Y$.

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?
Model: $X=U[0,1]$ is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is $Z:=X-Y$.
The power of the noise is $E\left[Z^{2}\right]$.

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?
Model: $X=U[0,1]$ is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is $Z:=X-Y$.
The power of the noise is $E\left[Z^{2}\right]$.

Analysis:

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?
Model: $X=U[0,1]$ is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is $Z:=X-Y$.
The power of the noise is $E\left[Z^{2}\right]$.
Analysis: We see that Z is uniform in $\left[0, a=2^{-(n+1)}\right]$.

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?
Model: $X=U[0,1]$ is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is $Z:=X-Y$.
The power of the noise is $E\left[Z^{2}\right]$.
Analysis: We see that Z is uniform in $\left[0, a=2^{-(n+1)}\right]$.
Thus,

$$
E\left[Z^{2}\right]=\frac{a^{2}}{3}=\frac{1}{3} 2^{-2(n+1)}
$$

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?
Model: $X=U[0,1]$ is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is $Z:=X-Y$.
The power of the noise is $E\left[Z^{2}\right]$.
Analysis: We see that Z is uniform in $\left[0, a=2^{-(n+1)}\right]$.
Thus,

$$
E\left[Z^{2}\right]=\frac{a^{2}}{3}=\frac{1}{3} 2^{-2(n+1)}
$$

The power of the signal X is $E\left[X^{2}\right]=$

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?
Model: $X=U[0,1]$ is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is $Z:=X-Y$.
The power of the noise is $E\left[Z^{2}\right]$.
Analysis: We see that Z is uniform in $\left[0, a=2^{-(n+1)}\right]$.
Thus,

$$
E\left[Z^{2}\right]=\frac{a^{2}}{3}=\frac{1}{3} 2^{-2(n+1)}
$$

The power of the signal X is $E\left[X^{2}\right]=\frac{1}{3}$.

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?
Model: $X=U[0,1]$ is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is $Z:=X-Y$.
The power of the noise is $E\left[Z^{2}\right]$.
Analysis: We see that Z is uniform in $\left[0, a=2^{-(n+1)}\right]$.
Thus,

$$
E\left[Z^{2}\right]=\frac{a^{2}}{3}=\frac{1}{3} 2^{-2(n+1)}
$$

The power of the signal X is $E\left[X^{2}\right]=\frac{1}{3}$.

Quantization Noise

Quantization Noise

We saw that $E\left[Z^{2}\right]=\frac{1}{3} 2^{-2(n+1)}$ and $E\left[X^{2}\right]=\frac{1}{3}$.

Quantization Noise

We saw that $E\left[Z^{2}\right]=\frac{1}{3} 2^{-2(n+1)}$ and $E\left[X^{2}\right]=\frac{1}{3}$.
The signal to noise ratio (SNR)

Quantization Noise

We saw that $E\left[Z^{2}\right]=\frac{1}{3} 2^{-2(n+1)}$ and $E\left[X^{2}\right]=\frac{1}{3}$.
The signal to noise ratio (SNR) is the power of the signal divided by the power of the noise.

Quantization Noise

We saw that $E\left[Z^{2}\right]=\frac{1}{3} 2^{-2(n+1)}$ and $E\left[X^{2}\right]=\frac{1}{3}$.
The signal to noise ratio (SNR) is the power of the signal divided by the power of the noise.
Thus,

$$
S N R=2^{2(n+1)}
$$

Quantization Noise

We saw that $E\left[Z^{2}\right]=\frac{1}{3} 2^{-2(n+1)}$ and $E\left[X^{2}\right]=\frac{1}{3}$.
The signal to noise ratio (SNR) is the power of the signal divided by the power of the noise.
Thus,

$$
S N R=2^{2(n+1)} .
$$

Expressed in decibels, one has

$$
S N R(d B)=10 \log _{10}(S N R)
$$

Quantization Noise

We saw that $E\left[Z^{2}\right]=\frac{1}{3} 2^{-2(n+1)}$ and $E\left[X^{2}\right]=\frac{1}{3}$.
The signal to noise ratio (SNR) is the power of the signal divided by the power of the noise.
Thus,

$$
S N R=2^{2(n+1)} .
$$

Expressed in decibels, one has

$$
S N R(d B)=10 \log _{10}(S N R)=20(n+1) \log _{10}(2)
$$

Quantization Noise

We saw that $E\left[Z^{2}\right]=\frac{1}{3} 2^{-2(n+1)}$ and $E\left[X^{2}\right]=\frac{1}{3}$.
The signal to noise ratio (SNR) is the power of the signal divided by the power of the noise.
Thus,

$$
S N R=2^{2(n+1)} .
$$

Expressed in decibels, one has

$$
S N R(d B)=10 \log _{10}(S N R)=20(n+1) \log _{10}(2) \approx 6(n+1)
$$

Quantization Noise

We saw that $E\left[Z^{2}\right]=\frac{1}{3} 2^{-2(n+1)}$ and $E\left[X^{2}\right]=\frac{1}{3}$.
The signal to noise ratio (SNR) is the power of the signal divided by the power of the noise.
Thus,

$$
S N R=2^{2(n+1)} .
$$

Expressed in decibels, one has

$$
S N R(d B)=10 \log _{10}(S N R)=20(n+1) \log _{10}(2) \approx 6(n+1)
$$

For instance, if $n=16$, then $\operatorname{SNR}(d B) \approx 112 d B$.

Expected Squared Distance

Expected Squared Distance

Problem 1:

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in $[0,1]$.

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in $[0,1]$.
What is $E\left[(X-Y)^{2}\right]$?

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in $[0,1]$.
What is $E\left[(X-Y)^{2}\right]$?

Analysis:

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in $[0,1]$.
What is $E\left[(X-Y)^{2}\right]$?
Analysis: One has

$$
E\left[(X-Y)^{2}\right]=
$$

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in [0, 1].
What is $E\left[(X-Y)^{2}\right]$?
Analysis: One has

$$
E\left[(X-Y)^{2}\right]=E\left[X^{2}+Y^{2}-2 X Y\right]
$$

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in [0, 1].
What is $E\left[(X-Y)^{2}\right]$?
Analysis: One has

$$
\begin{aligned}
E\left[(X-Y)^{2}\right] & =E\left[X^{2}+Y^{2}-2 X Y\right] \\
& =\frac{1}{3}+\frac{1}{3}-2 \frac{1}{2} \frac{1}{2}
\end{aligned}
$$

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in $[0,1]$.
What is $E\left[(X-Y)^{2}\right]$?
Analysis: One has

$$
\begin{aligned}
E\left[(X-Y)^{2}\right] & =E\left[X^{2}+Y^{2}-2 X Y\right] \\
& =\frac{1}{3}+\frac{1}{3}-2 \frac{1}{2} \frac{1}{2} \\
& =\frac{2}{3}-\frac{1}{2}=\frac{1}{6} .
\end{aligned}
$$

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in [0, 1].
What is $E\left[(X-Y)^{2}\right]$?
Analysis: One has

$$
\begin{aligned}
E\left[(X-Y)^{2}\right] & =E\left[X^{2}+Y^{2}-2 X Y\right] \\
& =\frac{1}{3}+\frac{1}{3}-2 \frac{1}{2} \frac{1}{2} \\
& =\frac{2}{3}-\frac{1}{2}=\frac{1}{6}
\end{aligned}
$$

Problem 2:

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in [0, 1].
What is $E\left[(X-Y)^{2}\right]$?
Analysis: One has

$$
\begin{aligned}
E\left[(X-Y)^{2}\right] & =E\left[X^{2}+Y^{2}-2 X Y\right] \\
& =\frac{1}{3}+\frac{1}{3}-2 \frac{1}{2} \frac{1}{2} \\
& =\frac{2}{3}-\frac{1}{2}=\frac{1}{6}
\end{aligned}
$$

Problem 2: What about in a unit square?

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in [0, 1].
What is $E\left[(X-Y)^{2}\right]$?
Analysis: One has

$$
\begin{aligned}
E\left[(X-Y)^{2}\right] & =E\left[X^{2}+Y^{2}-2 X Y\right] \\
& =\frac{1}{3}+\frac{1}{3}-2 \frac{1}{2} \frac{1}{2} \\
& =\frac{2}{3}-\frac{1}{2}=\frac{1}{6}
\end{aligned}
$$

Problem 2: What about in a unit square?
Analysis:

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in [0, 1].
What is $E\left[(X-Y)^{2}\right]$?
Analysis: One has

$$
\begin{aligned}
E\left[(X-Y)^{2}\right] & =E\left[X^{2}+Y^{2}-2 X Y\right] \\
& =\frac{1}{3}+\frac{1}{3}-2 \frac{1}{2} \frac{1}{2} \\
& =\frac{2}{3}-\frac{1}{2}=\frac{1}{6} .
\end{aligned}
$$

Problem 2: What about in a unit square?
Analysis: One has

$$
E\left[\|\mathbf{X}-\mathbf{Y}\|^{2}\right]=
$$

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in [0, 1].
What is $E\left[(X-Y)^{2}\right]$?
Analysis: One has

$$
\begin{aligned}
E\left[(X-Y)^{2}\right] & =E\left[X^{2}+Y^{2}-2 X Y\right] \\
& =\frac{1}{3}+\frac{1}{3}-2 \frac{1}{2} \frac{1}{2} \\
& =\frac{2}{3}-\frac{1}{2}=\frac{1}{6} .
\end{aligned}
$$

Problem 2: What about in a unit square?
Analysis: One has

$$
E\left[\|\mathbf{X}-\mathbf{Y}\|^{2}\right]=E\left[\left(X_{1}-Y_{1}\right)^{2}\right]+E\left[\left(X_{2}-Y_{2}\right)^{2}\right]
$$

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in [0, 1].
What is $E\left[(X-Y)^{2}\right]$?
Analysis: One has

$$
\begin{aligned}
E\left[(X-Y)^{2}\right] & =E\left[X^{2}+Y^{2}-2 X Y\right] \\
& =\frac{1}{3}+\frac{1}{3}-2 \frac{1}{2} \frac{1}{2} \\
& =\frac{2}{3}-\frac{1}{2}=\frac{1}{6} .
\end{aligned}
$$

Problem 2: What about in a unit square?
Analysis: One has

$$
\begin{aligned}
E\left[\|\mathbf{X}-\mathbf{Y}\|^{2}\right] & =E\left[\left(X_{1}-Y_{1}\right)^{2}\right]+E\left[\left(X_{2}-Y_{2}\right)^{2}\right] \\
& =2 \times \frac{1}{6} .
\end{aligned}
$$

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in [0, 1].
What is $E\left[(X-Y)^{2}\right]$?
Analysis: One has

$$
\begin{aligned}
E\left[(X-Y)^{2}\right] & =E\left[X^{2}+Y^{2}-2 X Y\right] \\
& =\frac{1}{3}+\frac{1}{3}-2 \frac{1}{2} \frac{1}{2} \\
& =\frac{2}{3}-\frac{1}{2}=\frac{1}{6} .
\end{aligned}
$$

Problem 2: What about in a unit square?
Analysis: One has

$$
\begin{aligned}
E\left[\|\mathbf{X}-\mathbf{Y}\|^{2}\right] & =E\left[\left(X_{1}-Y_{1}\right)^{2}\right]+E\left[\left(X_{2}-Y_{2}\right)^{2}\right] \\
& =2 \times \frac{1}{6} .
\end{aligned}
$$

Problem 3:

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in [0, 1].
What is $E\left[(X-Y)^{2}\right]$?
Analysis: One has

$$
\begin{aligned}
E\left[(X-Y)^{2}\right] & =E\left[X^{2}+Y^{2}-2 X Y\right] \\
& =\frac{1}{3}+\frac{1}{3}-2 \frac{1}{2} \frac{1}{2} \\
& =\frac{2}{3}-\frac{1}{2}=\frac{1}{6} .
\end{aligned}
$$

Problem 2: What about in a unit square?
Analysis: One has

$$
\begin{aligned}
E\left[\|\mathbf{X}-\mathbf{Y}\|^{2}\right] & =E\left[\left(X_{1}-Y_{1}\right)^{2}\right]+E\left[\left(X_{2}-Y_{2}\right)^{2}\right] \\
& =2 \times \frac{1}{6}
\end{aligned}
$$

Problem 3: What about in n dimensions?

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in [0, 1].
What is $E\left[(X-Y)^{2}\right]$?
Analysis: One has

$$
\begin{aligned}
E\left[(X-Y)^{2}\right] & =E\left[X^{2}+Y^{2}-2 X Y\right] \\
& =\frac{1}{3}+\frac{1}{3}-2 \frac{1}{2} \frac{1}{2} \\
& =\frac{2}{3}-\frac{1}{2}=\frac{1}{6} .
\end{aligned}
$$

Problem 2: What about in a unit square?
Analysis: One has

$$
\begin{aligned}
E\left[\|\mathbf{X}-\mathbf{Y}\|^{2}\right] & =E\left[\left(X_{1}-Y_{1}\right)^{2}\right]+E\left[\left(X_{2}-Y_{2}\right)^{2}\right] \\
& =2 \times \frac{1}{6}
\end{aligned}
$$

Problem 3: What about in n dimensions? $\frac{n}{6}$.

Geometric and Exponential

Geometric and Exponential

The geometric and exponential distributions are similar.

Geometric and Exponential

The geometric and exponential distributions are similar. They are both memoryless.

Geometric and Exponential

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every $1 / N$ second

Geometric and Exponential

The geometric and exponential distributions are similar. They are both memoryless.
Consider flipping a coin every $1 / N$ second with $\operatorname{Pr}[H]=p / N$,

Geometric and Exponential

The geometric and exponential distributions are similar. They are both memoryless.
Consider flipping a coin every $1 / N$ second with $\operatorname{Pr}[H]=p / N$, where $N \gg 1$.

Geometric and Exponential

The geometric and exponential distributions are similar. They are both memoryless.
Consider flipping a coin every $1 / N$ second with $\operatorname{Pr}[H]=p / N$, where $N \gg 1$.

Let X be the time until the first H.

Geometric and Exponential

The geometric and exponential distributions are similar. They are both memoryless.
Consider flipping a coin every $1 / N$ second with $\operatorname{Pr}[H]=p / N$, where $N \gg 1$.

Let X be the time until the first H.
Fact:

Geometric and Exponential

The geometric and exponential distributions are similar. They are both memoryless.
Consider flipping a coin every $1 / N$ second with $\operatorname{Pr}[H]=p / N$, where $N \gg 1$.

Let X be the time until the first H.
Fact: $X \approx \operatorname{Expo}(p)$.

Geometric and Exponential

The geometric and exponential distributions are similar. They are both memoryless.
Consider flipping a coin every $1 / N$ second with $\operatorname{Pr}[H]=p / N$, where $N \gg 1$.

Let X be the time until the first H.
Fact: $X \approx \operatorname{Expo}(p)$.

Analysis:

Geometric and Exponential

The geometric and exponential distributions are similar. They are both memoryless.
Consider flipping a coin every $1 / N$ second with $\operatorname{Pr}[H]=p / N$, where $N \gg 1$.

Let X be the time until the first H.
Fact: $X \approx \operatorname{Expo}(p)$.
Analysis: Note that

$$
\operatorname{Pr}[X>t] \approx \operatorname{Pr}[\text { first } N t \text { flips are tails }]
$$

Geometric and Exponential

The geometric and exponential distributions are similar. They are both memoryless.
Consider flipping a coin every $1 / N$ second with $\operatorname{Pr}[H]=p / N$, where $N \gg 1$.

Let X be the time until the first H.
Fact: $X \approx \operatorname{Expo}(p)$.
Analysis: Note that

$$
\begin{aligned}
\operatorname{Pr}[X>t] & \approx \operatorname{Pr}[\text { first } N t \text { flips are tails }] \\
& =\left(1-\frac{p}{N}\right)^{N t}
\end{aligned}
$$

Geometric and Exponential

The geometric and exponential distributions are similar. They are both memoryless.
Consider flipping a coin every $1 / N$ second with $\operatorname{Pr}[H]=p / N$, where $N \gg 1$.

Let X be the time until the first H.
Fact: $X \approx \operatorname{Expo}(p)$.
Analysis: Note that

$$
\begin{aligned}
\operatorname{Pr}[X>t] & \approx \operatorname{Pr}[\text { first } N t \text { flips are tails }] \\
& =\left(1-\frac{p}{N}\right)^{N t} \approx \exp \{-p t\}
\end{aligned}
$$

Geometric and Exponential

The geometric and exponential distributions are similar. They are both memoryless.
Consider flipping a coin every $1 / N$ second with $\operatorname{Pr}[H]=p / N$, where $N \gg 1$.

Let X be the time until the first H.
Fact: $X \approx \operatorname{Expo}(p)$.
Analysis: Note that

$$
\begin{aligned}
\operatorname{Pr}[X>t] & \approx \operatorname{Pr}[\text { first } N t \text { flips are tails }] \\
& =\left(1-\frac{p}{N}\right)^{N t} \approx \exp \{-p t\}
\end{aligned}
$$

Indeed, $\left(1-\frac{a}{N}\right)^{N} \approx \exp \{-a\}$.

Summary

Continuous Probability

Summary

Continuous Probability

Summary

> Continuous Probability

- Continuous RVs are essentially the same as discrete RVs

Summary

Continuous Probability

- Continuous RVs are essentially the same as discrete RVs
- Think that $X \approx x$ with probability $f_{X}(x) \varepsilon$

Summary

Continuous Probability

- Continuous RVs are essentially the same as discrete RVs
- Think that $X \approx x$ with probability $f_{X}(x) \varepsilon$
- Sums become integrals,

Summary

Continuous Probability

- Continuous RVs are essentially the same as discrete RVs
- Think that $X \approx x$ with probability $f_{X}(x) \varepsilon$
- Sums become integrals,
- The exponential distribution is magical:

Summary

Continuous Probability

- Continuous RVs are essentially the same as discrete RVs
- Think that $X \approx x$ with probability $f_{X}(x) \varepsilon$
- Sums become integrals,
- The exponential distribution is magical: memoryless.

