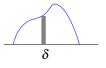
Probability

Probability! Confuses us. But really neat. At times, continuous. At others, discrete. Sample Space: Ω , $Pr[\omega]$. Ra Event: $Pr[A] = \sum_{\omega \in A} Pr[\omega]$ $\sum_{\omega} Pr[\omega] = 1$. Random variables: $X(\omega)$. Distribution: Pr[X = x] $\sum_{x} Pr[X = x] = 1$.

Continuous as Discrete. $Pr[X \in [x, x + \delta]] \approx f(x)\delta$ Random Variable: X Event: A = [a, b], $Pr[X \in A]$, CDF: $F(x) = Pr[X \le x]$. PDF: $f(x) = \frac{dF(x)}{dx}$. $\int_{-\infty}^{\infty} f(x) = 1$.

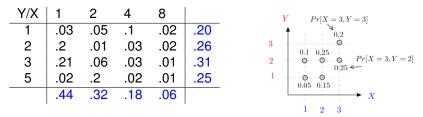


Probability Rules are all good.

Conditional Probabity. Events: A.B. Discrete: "Heads", "Tails", X = 1. Y = 5. Continuous: X in [.2, .3]. $X \in [.2, .3]$ or $X \in [.4, .6]$. Conditional Probability: $Pr[A|B] = \frac{Pr[A] \cap Pr[B]}{Pr[B]}$ Pr["Second Heads"|"First Heads"], $Pr[X \in [.2, .3] | X \in [.2, .3] \text{ or } X \in [.5, .6]].$ Total Probability Rule: $Pr[A] = Pr[A \cap B] + Pr[A \cap \overline{B}]$ Pr["Second Heads"] = Pr[HH] + Pr[HT]B is First coin heads. $Pr[X \in [.45, .55]] = Pr[X \in [.45, .50]] + Pr[X \in (.50, .55]]$ *B* is $X \in [0, .5]$ Product Rule: $Pr[A \cap B] = Pr[A|B]Pr[B]$. Bayes Rule: Pr[A|B] = Pr[B|A]Pr[A]/Pr[B].

All work for continuous with intervals as events.

Joint distribution.



Marginal Distribution? Here is one. And here is another. The distribution of one of the variables.

E[Y|X]?

$$\begin{split} E[Y|X=1] &= (.03 \times 1 + .2 \times 2 + .21 \times 3 + .02 \times 5)/.44 = \frac{1.16}{.44}.\\ E[Y|X=2] &= (.05 \times 1 + .01 \times 2 + .06 \times 3 + .2 \times 5)/.32 = \frac{1.25}{.32}.\\ E[Y|X=4] &= (.1 \times 1 + .03 \times 2 + .03 \times 3 + .02 \times 5)/.18 = \frac{.35}{.18}.\\ E[Y|X=8] &= (.02 \times 1 + .02 \times 2 + .01 \times 3 + .01 \times 5)/.06 = \frac{.10}{.06}.\\ E[Y] &= E[E[Y|X]] = E[Y|X=1]Pr[X=1] + E[Y|X=2]Pr[X=2] + \cdots \\ E[Y] &= (1.16 + 1.25 + .35 + .10) = 2.86. \end{split}$$

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

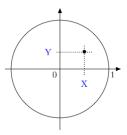
where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $Pr[X = m\varepsilon, Y = n\varepsilon] = f_{X,Y}(m\varepsilon, n\varepsilon)\varepsilon^2$.

Extension: $\mathbf{X} = (X_1, \dots, X_n)$ with $f_{\mathbf{X}}(\mathbf{x})$.

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.



$$\implies f_{X,Y}(x,y) = \frac{1}{\pi} \mathbf{1} \{ x^2 + y^2 \leq 1 \}.$$

Some events!

$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

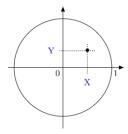
$$Pr[X < 0, Y > 0] = \frac{1}{4}$$

$$Pr[X^{2} + Y^{2} \le r^{2}] = r^{2}$$

$$Pr[X > Y] = \frac{1}{2}.$$

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.



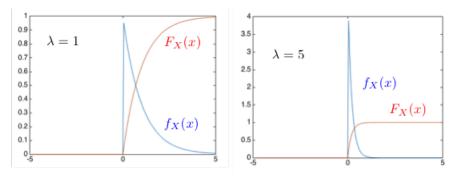
 $f_{X,Y}(x,y) = \frac{1}{\pi} 1\{x^2 + y^2 \le 1\}.$ Marginals? $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \frac{2}{\pi} \sqrt{1 - x^2}$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx = \frac{2}{\pi} \sqrt{1-y^2}$$

$Expo(\lambda)$

The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0\\ 1 - e^{-\lambda x}, & \text{if } x \ge 0. \end{cases}$$



Note that $Pr[X > t] = e^{-\lambda t}$ for t > 0.

Some Properties

1. *Expo* is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

2. Scaling *Expo*. Let $X = Expo(\lambda)$ and Y = aX for some a > 0. Then

$$\begin{aligned} \Pr[Y > t] &= \Pr[aX > t] = \Pr[X > t/a] \\ &= e^{-\lambda(t/a)} = e^{-(\lambda/a)t} = \Pr[Z > t] \text{ for } Z = Expo(\lambda/a). \end{aligned}$$

Thus, $a \times Expo(\lambda) = Expo(\lambda/a)$. Also, $Expo(\lambda) = \frac{1}{\lambda} Expo(1)$.

More Properties

3. Scaling Uniform. Let X = U[0, 1] and Y = a + bX where b > 0. Then,

$$Pr[Y \in (y, y+\delta)] = Pr[a+bX \in (y, y+\delta)] = Pr[X \in (\frac{y-a}{b}, \frac{y+\delta-a}{b})]$$
$$= Pr[X \in (\frac{y-a}{b}, \frac{y-a}{b} + \frac{\delta}{b})] = \frac{1}{b}\delta, \text{ for } 0 < \frac{y-a}{b} < 1$$
$$= \frac{1}{b}\delta, \text{ for } a < y < a+b.$$

Thus, $f_Y(y) = \frac{1}{b}$ for a < y < a + b. Hence, Y = U[a, a + b].

Replacing *b* by b - a we see that, if X = U[0, 1], then Y = a + (b - a)X is U[a, b].

Some More Properties

4. Scaling pdf. Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0. Then

$$Pr[Y \in (y, y+\delta)] = Pr[a+bX \in (y, y+\delta)] = Pr[X \in (\frac{y-a}{b}, \frac{y+\delta-a}{b})]$$
$$= Pr[X \in (\frac{y-a}{b}, \frac{y-a}{b} + \frac{\delta}{b})] = f_X(\frac{y-a}{b})\frac{\delta}{b}.$$

Now, the left-hand side is $f_Y(y)\delta$. Hence,

$$f_Y(y) = \frac{1}{b} f_X(\frac{y-a}{b})$$

Expectation

Definition: The expectation of a random variable X with pdf f(x) is defined as

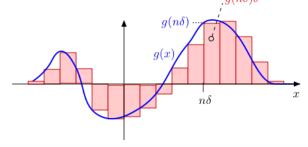
$$\Xi[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

1

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Indeed, for any *g*, one has $\int g(x) dx \approx \sum_n g(n\delta)\delta$. Choose $g(x) = x f_X(x)$.



Examples of Expectation

1.
$$X = U[0, 1]$$
. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^1 x \cdot 1 dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2}.$$

2. $X = \text{distance to 0 of dart shot uniformly in unit circle. Then } f_X(x) = 2x1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^1 x \cdot 2x dx = \left[\frac{2x^3}{3}\right]_0^1 = \frac{2}{3}.$$

Examples of Expectation

3.
$$X = Expo(\lambda)$$
. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^{\infty} x \lambda e^{-\lambda x} dx = -\int_0^{\infty} x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_a^b u(x)dv(x) = [u(x)v(x)]_a^b - \int_a^b v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_a^b v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$
$$= 0 - 0 + \frac{1}{\lambda} \int_0^\infty de^{-\lambda x} = -\frac{1}{\lambda}.$$

Hence, $E[X] = \frac{1}{\lambda}$.

Independent Continuous Random Variables Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs *X* and *Y* are independent if and only if

$$f_{X,Y}(x,y)=f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs X_1, \ldots, X_n are mutually independent if

$$Pr[X_1 \in A_1, \ldots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \ldots, A_n$$

Theorem: The continuous RVs $X_1, ..., X_n$ are mutually independent if and only if

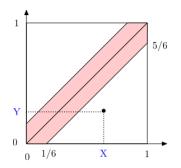
$$f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n).$$

Proof: As in the discrete case.

Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they meet?



Thus, $Pr[meet] = 1 - (\frac{5}{6})^2 = \frac{11}{36}$.

Here, (X, Y) are the times when the friends reach the restaurant.

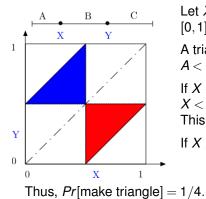
The shaded area are the pairs where |X - Y| < 1/6, i.e., such that they meet.

The complement is the sum of two rectangles. When you put them together, they form a square with sides 5/6.

Breaking a Stick

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?



Let X, Y be the two break points along the [0, 1] stick.

A triangle if A < B + C, B < A + C, and C < A + B.

If X < Y, this means X < 0.5, Y < X + .5, Y > 0.5. This is the blue triangle.

If X > Y, get red triangle, by symmetry.

Maximum of Two Exponentials

Let
$$X = Expo(\lambda)$$
 and $Y = Expo(\mu)$ be independent.
Define $Z = \max{X, Y}$.

Calculate E[Z].

We compute f_Z , then integrate.

One has

$$\begin{aligned} \Pr[Z < z] &= \Pr[X < z, Y < z] = \Pr[X < z] \Pr[Y < z] \\ &= (1 - e^{-\lambda z})(1 - e^{-\mu z}) = 1 - e^{-\lambda z} - e^{-\mu z} + e^{-(\lambda + \mu)z} \end{aligned}$$

Thus,

$$f_Z(z) = \lambda e^{-\lambda z} + \mu e^{-\mu z} - (\lambda + \mu) e^{-(\lambda + \mu)z}, \forall z > 0.$$

Since, $\int_0^\infty x \lambda e^{-\lambda x} dx = \lambda \left[-\frac{xe^{-\lambda x}}{\lambda} - \frac{e^{-\lambda x}}{\lambda^2} \right]_0^\infty = \frac{1}{\lambda}$.

$$E[Z] = \int_0^\infty z f_Z(z) dz = \frac{1}{\lambda} + \frac{1}{\mu} - \frac{1}{\lambda + \mu}.$$

Maximum of *n* i.i.d. Exponentials

Let X_1, \ldots, X_n be i.i.d. Expo(1). Define $Z = \max\{X_1, X_2, \ldots, X_n\}$. Calculate E[Z].

We use a recursion. The key idea is as follows:

$$Z = \min\{X_1, \ldots, X_n\} + V$$

where V is the maximum of n-1 i.i.d. Expo(1). This follows from the memoryless property of the exponential.

Let then $A_n = E[Z]$. We see that

$$A_n = E[\min\{X_1, \dots, X_n\}] + A_{n-1}$$

= $\frac{1}{n} + A_{n-1}$

because the minimum of *Expo* is *Expo* with the sum of the rates. Hence,

$$E[Z] = A_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = H(n).$$

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Model: X = U[0, 1] is the continuous value. *Y* is the closest multiple of 2^{-n} to *X*. Thus, we can represent *Y* with *n* bits. The error is Z := X - Y.

The power of the noise is $E[Z^2]$.

Analysis: We see that *Z* is uniform in $[0, a = 2^{-(n+1)}]$.

Thus,

$$E[Z^2] = \frac{a^2}{3} = \frac{1}{3}2^{-2(n+1)}.$$

The power of the signal X is $E[X^2] = \frac{1}{3}$.

Quantization Noise

We saw that $E[Z^2] = \frac{1}{3}2^{-2(n+1)}$ and $E[X^2] = \frac{1}{3}$.

The **signal to noise ratio** (SNR) is the power of the signal divided by the power of the noise.

Thus,

$$SNR = 2^{2(n+1)}$$
.

Expressed in decibels, one has

```
SNR(dB) = 10\log_{10}(SNR) = 20(n+1)\log_{10}(2) \approx 6(n+1).
```

For instance, if n = 16, then $SNR(dB) \approx 112 dB$.

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in [0, 1].

What is $E[(X - Y)^2]$?

Analysis: One has

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY]$$

= $\frac{1}{3} + \frac{1}{3} - 2\frac{1}{2}\frac{1}{2}$
= $\frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$

Problem 2: What about in a unit square?

Analysis: One has

$$E[||\mathbf{X} - \mathbf{Y}||^2] = E[(X_1 - Y_1)^2] + E[(X_2 - Y_2)^2]$$

= $2 \times \frac{1}{6}$.

Problem 3: What about in *n* dimensions? $\frac{n}{6}$.

Geometric and Exponential

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let X be the time until the first H.

Fact: $X \approx Expo(p)$.

Analysis: Note that

$$\begin{aligned} \Pr[X > t] &\approx & \Pr[\text{first } Nt \text{ flips are tails}] \\ &= & (1 - \frac{p}{N})^{Nt} \approx \exp\{-pt\}. \end{aligned}$$

Indeed, $(1 - \frac{a}{N})^N \approx \exp\{-a\}$.

Summary

Continuous Probability

- Continuous RVs are essentially the same as discrete RVs
- Think that $X \approx x$ with probability $f_X(x)\varepsilon$
- Sums become integrals,
- ► The exponential distribution is magical: memoryless.