CS70: Lecture25.

Markov Chains 1.5

- 1. Review
- 2. Distribution
- 3. Irreducibility
- 4. Convergence

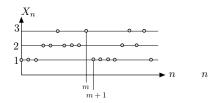
Review

- Markov Chain:
 - ► Finite set \mathcal{X} ; π_0 ; $P = \{P(i,j), i,j \in \mathcal{X}\}$;
 - $Pr[X_0 = i] = \pi_0(i), i \in \mathscr{X}$
 - ► $Pr[X_{n+1} = j \mid X_0, ..., X_n = i] = P(i,j), i,j \in \mathcal{X}, n \ge 0.$
 - Note:

$$Pr[X_0 = i_0, X_1 = i_1, \dots, X_n = i_n] = \pi_0(i_0)P(i_0, i_1)\cdots P(i_{n-1}, i_n).$$

- First Passage Time:
 - $A \cap B = \emptyset$; $\beta(i) = E[T_A | X_0 = i]$; $\alpha(i) = P[T_A < T_B | X_0 = i]$
 - $\beta(i) = 1 + \sum_{j} P(i,j)\beta(j);$
 - $\alpha(i) = \sum_{j} P(i,j)\alpha(j). \ \alpha(A) = 1, \alpha(B) = 0.$

Distribution of X_n



Recall π_n is a distribution over states for X_n .

Stationary distribution: $\pi = \pi P$.

Distribution over states is the same before/after transition.

probability entering $i: \sum_{i,j} P(j,i)\pi(j)$.

probability leaving i: π_i .

are Equal!

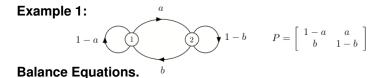
Distribution same after one step.

Questions? Does one exist? Is it unique?

If it exists and is unique. Then what?

Sometimes the distribution as $n \rightarrow \infty$

Stationary: Example



$$\pi P = \pi \quad \Leftrightarrow \quad [\pi(1), \pi(2)] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = [\pi(1), \pi(2)]
 \Leftrightarrow \quad \pi(1)(1-a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1-b) = \pi(2)
 \Leftrightarrow \quad \pi(1)a = \pi(2)b.$$

These equations are redundant! We have to add an equation: $\pi(1) + \pi(2) = 1$. Then we find

$$\pi = \left[\frac{b}{a+b}, \frac{a}{a+b}\right].$$

Stationary distributions: Example 2

$$\pi P = \pi \Leftrightarrow [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \Leftrightarrow \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2).$$

Every distribution is invariant for this Markov chain. This is obvious, since $X_n = X_0$ for all n. Hence, $Pr[X_n = i] = Pr[X_0 = i], \forall (i, n)$.

Discussion.

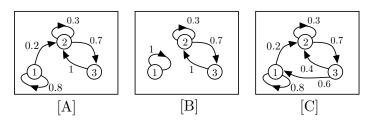
We have seen a chain with one stationary, and a chain with many.

When is here just one?

Irreducibility.

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:



- [A] is not irreducible. It cannot go from (2) to (1).
- [B] is not irreducible. It cannot go from (2) to (1).
- [C] is irreducible. It can go from every *i* to every *j*.

If you consider the graph with arrows when P(i,j) > 0, irreducible means that there is a single connected component.

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), \dots, \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Ok. Now.

Only one stationary distribution if irreducible (or connected.)

Long Term Fraction of Time in States

Theorem Let X_n be an irreducible Markov chain with invariant distribution π .

Then, for all i,

$$\frac{1}{n}\sum_{m=0}^{n-1}1\{X_m=i\}\to \pi(i), \text{ as } n\to\infty.$$

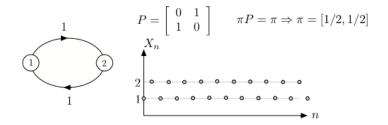
The left-hand side is the fraction of time that $X_m = i$ during steps 0, 1, ..., n-1. Thus, this fraction of time approaches $\pi(i)$.

Proof: Lecture note 24 gives a plausibility argument.

Long Term Fraction of Time in States

Theorem Let X_n be an irreducible Markov chain with invariant distribution π . Then, for all i, $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$.

Example 1:

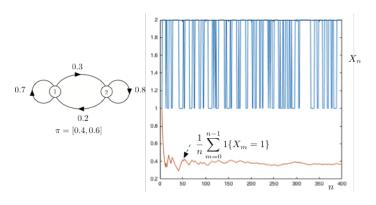


The fraction of time in state 1 converges to 1/2, which is $\pi(1)$.

Long Term Fraction of Time in States

Theorem Let X_n be an irreducible Markov chain with invariant distribution π . Then, for all i, $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$.

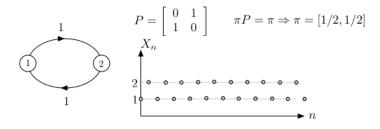
Example 2:



Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π ?

Answer: Not necessarily. Here is an example:



Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, ...$

Thus, if $\pi_0 = [1,0], \ \pi_1 = [0,1], \pi_2 = [1,0], \pi_3 = [0,1],$ etc.

Hence, π_n does not converge to $\pi = [1/2, 1/2]$. Notice, all cycles or closed walks have even length.

Periodicity

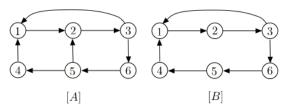
Definition: Periodicity is gcd of the lengths of all closed walks.

Previous example: 2.

Definition If periodicity is 1, Markov chain is said to be aperiodic.

Otherwise, it is periodic.

Example



[A]: Closed walks of length 3 and length 4 \implies periodicity = 1.

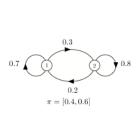
[B]: All closed walks multiple of $3 \implies$ periodicity =2.

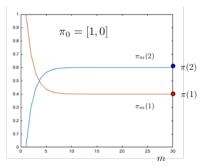
Convergence of π_n

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π . Then, for all $i \in \mathcal{X}$,

$$\pi_n(i) \to \pi(i)$$
, as $n \to \infty$.

Example



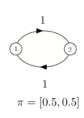


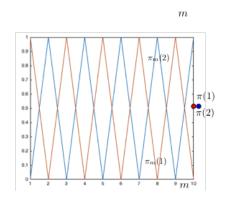
Convergence of π_n

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π . Then, for all $i \in \mathcal{X}$,

$$\pi_n(i) \to \pi(i)$$
, as $n \to \infty$.

Example





Summary

Markov Chains

- ► Markov Chain: $Pr[X_{n+1} = j | X_0, ..., X_n = i] = P(i,j)$
- ► FSE: $\beta(i) = 1 + \sum_{j} P(i,j)\beta(j)$; $\alpha(i) = \sum_{j} P(i,j)\alpha(j)$.
- $\pi_n = \pi_0 P^n$
- \blacktriangleright π is invariant iff $\pi P = \pi$
- ▶ Irreducible \Rightarrow one and only one invariant distribution π
- ▶ Irreducible \Rightarrow fraction of time in state *i* approaches $\pi(i)$
- ▶ Irreducible + Aperiodic $\Rightarrow \pi_n \to \pi$.
- ▶ Calculating π : One finds $\pi = [0, 0, ..., 1]Q^{-1}$ where $Q = \cdots$.

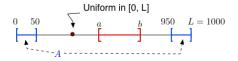
CS70: Continuous Probability.

Continuous Probability 1

- Examples
- 2. Events
- 3. Continuous Random Variables

Choose a real number X, uniformly at random in [0,1].

What is the probability that X is exactly equal to 1/3? Well, ..., 0.



What is the probability that X is exactly equal to 0.6? Again, 0.

In fact, for any $x \in [0,1]$, one has Pr[X = x] = 0.

How should we then describe 'choosing uniformly at random in [0,1]'? Here is the way to do it:

$$Pr[X \in [a,b]] = b - a, \forall 0 \le a \le b \le 1.$$

Makes sense: b - a is the fraction of [0, 1] that [a, b] covers.

Let [a,b] denote the **event** that the point X is in the interval [a,b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.**

More generally, events in this space are unions of intervals.

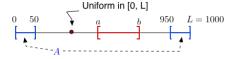
Example: the event A - "within 0.2 of 0 or 1" is $A = [0,0.2] \cup [0.8,1]$. Thus.

$$Pr[A] = Pr[[0,0.2]] + Pr[[0.8,1]] = 0.4.$$

More generally, if A_n are pairwise disjoint intervals in [0,1], then

$$Pr[\cup_n A_n] := \sum_n Pr[A_n].$$

Many subsets of [0,1] are of this form. Thus, the probability of those sets is well defined. We call such sets events.



Note: A radical change in approach.

Finite prob. space: $\Omega = \{1, 2, ..., N\}$, with $Pr[\omega] = p_{\omega}$.

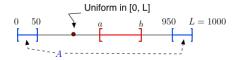
$$\implies Pr[A] = \sum_{\omega \in A} p_{\omega} \text{ for } A \subset \Omega.$$

Continuous space: e.g., $\Omega = [0, 1]$,

 $Pr[\omega]$ is typically 0.

Instead, start with Pr[A] for some events A.

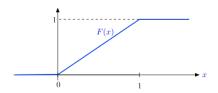
Event A = interval, or union of intervals.



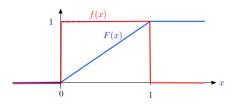
$$Pr[X \le x] = x \text{ for } x \in [0,1]. \text{ Also, } Pr[X \le x] = 0 \text{ for } x < 0.$$

 $Pr[X \le x] = 1 \text{ for } .2x > 1.$

Define $F(x) = Pr[X \le x]$.



Then we have $Pr[X \in (a,b]] = Pr[X \le b] - Pr[X \le a] = F(b) - F(a)$. Thus, $F(\cdot)$ specifies the probability of all the events!



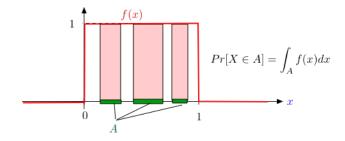
$$Pr[X \in (a,b]] = Pr[X \le b] - Pr[X \le a] = F(b) - F(a).$$

An alternative view is to define $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0,1]\}$. Then

$$F(b) - F(a) = \int_a^b f(x) dx.$$

Thus, the probability of an event is the integral of f(x) over the event:

$$Pr[X \in A] = \int_A f(x) dx.$$

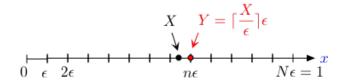


Think of f(x) as describing how one unit of probability is spread over [0,1]: uniformly!

Then $Pr[X \in A]$ is the probability mass over A.

Observe:

- This makes the probability automatically additive.
- ▶ We need $f(x) \ge 0$ and $\int_{-\infty}^{\infty} f(x) dx = 1$.



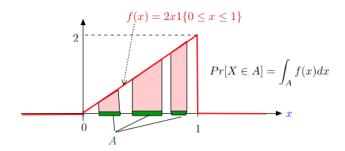
Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N.

Then $|X - Y| \le \varepsilon$ and Y is discrete: $Y \in \{\varepsilon, 2\varepsilon, ..., N\varepsilon\}$.

Also, $Pr[Y = n\varepsilon] = \frac{1}{N}$ for n = 1, ..., N.

Thus, X is 'almost discrete.'



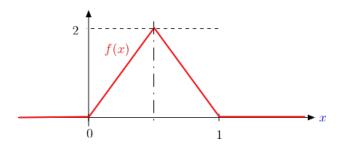
This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. It defines another way of choosing X at random in [0,1].

Note that *X* is more likely to be closer to 1 than to 0.

One has $Pr[X \le x] = \int_{-\infty}^{x} f(u) du = x^2$ for $x \in [0, 1]$.

Also, $Pr[X \in (x, x + \varepsilon)] = \int_{x}^{x+\varepsilon} f(u) du \approx f(x)\varepsilon$.

Another Nonuniform Choice at Random in [0,1].



This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance, $Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2[x^2]_0^{1/3} = \frac{2}{9}$.

Thus, $Pr[X \in [0, 1/3]] = Pr[X \in [2/3, 1]] = \frac{2}{9}$ and $Pr[X \in [1/3, 2/3]] = \frac{5}{9}$.

General Random Choice in R

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

Define *X* by
$$Pr[X \in (a,b]] = F(b) - F(a)$$
 for $a < b$. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]]$$

$$= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]]$$

$$= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

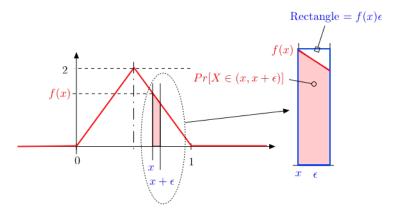
Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
$$Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$$

Here, F(x) is called the cumulative distribution function (cdf) of X and f(x) is the probability density function (pdf) of X.

To indicate that F and f correspond to the RV X, we will write them $F_X(x)$ and $f_X(x)$.

$$Pr[X \in (x, x + \varepsilon)]$$

An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:



Thus, the pdf is the 'local probability by unit length.' It is the 'probability density.'

Discrete Approximation

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Thus,
$$Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$$
.

Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.

Also, if
$$f_X(x) = \frac{d}{dx} F_X(x)$$
, then $F_X(x+\varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Hence, $Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Thus, we can think of X of being almost discrete with $Pr[X = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Example: CDF

Example: hitting random location on gas tank.

Random location on circle.

Random Variable: Y distance from center.

Probability within y of center:

$$Pr[Y \le y] = \frac{\text{area of small circle}}{\text{area of dartboard}}$$

= $\frac{\pi y^2}{\pi} = y^2$.

Hence,

$$F_Y(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^2 & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

Calculation of event with dartboard...

Probability between .5 and .6 of center? Recall CDF.

$$F_Y(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^2 & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

$$Pr[0.5 < Y \le 0.6] = Pr[Y \le 0.6] - Pr[Y \le 0.5]$$

= $F_Y(0.6) - F_Y(0.5)$
= $.36 - .25$
= $.11$

PDF.

Example: "Dart" board.

Recall that

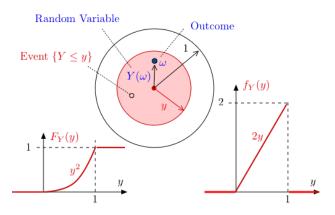
$$F_{Y}(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^{2} & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

$$f_{Y}(y) = F'_{Y}(y) = \begin{cases} 0 & \text{for } y < 0 \\ 2y & \text{for } 0 \le y \le 1 \\ 0 & \text{for } y > 1 \end{cases}$$

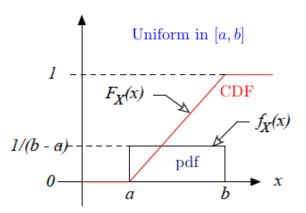
The cumulative distribution function (cdf) and probability distribution function (pdf) give full information.

Use whichever is convenient.

Target



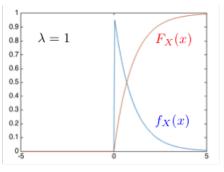
U[a,b]

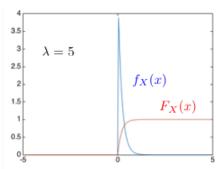


$Expo(\lambda)$

The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x > 0\}$

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1 - e^{-\lambda x}, & \text{if } x \ge 0. \end{cases}$$





Note that $Pr[X > t] = e^{-\lambda t}$ for t > 0.

Continuous Random Variables

Continuous random variable X, specified by

F_X(x) = Pr[X ≤ x] for all x.
 Cumulative Distribution Function (cdf).

$$Pr[a < X \le b] = F_X(b) - F_X(a)$$

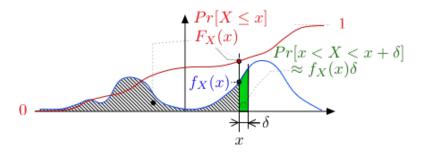
- 1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.
- 1.2 $F_X(x) \le F_X(y)$ if $x \le y$.
- 2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$. Probability Density Function (pdf).

$$Pr[a < X \le b] = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$$

- 2.1 $f_X(x) \ge 0$ for all $x \in \Re$.
- $2.2 \int_{-\infty}^{\infty} f_X(x) dx = 1.$

Recall that $Pr[X \in (x, x + \delta)] \approx f_X(x)\delta$. X "takes" value $n\delta$, for $n \in Z$, with $Pr[X = n\delta] = f_X(n\delta)\delta$

A Picture



The pdf $f_X(x)$ is a nonnegative function that integrates to 1.

The cdf $F_X(x)$ is the integral of f_X .

$$Pr[x < X < x + \delta] \approx f_X(x)\delta$$

 $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(u)du$

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

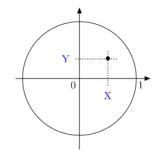
where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $Pr[X = m\varepsilon, Y = n\varepsilon] = f_{X,Y}(m\varepsilon, n\varepsilon)\varepsilon^2$.

Extension: $\mathbf{X} = (X_1, \dots, X_n)$ with $f_{\mathbf{X}}(\mathbf{x})$.

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.



Thus,
$$f_{X,Y}(x,y) = \frac{1}{\pi} \mathbf{1} \{ x^2 + y^2 \le 1 \}.$$

$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

$$Pr[X < 0, Y > 0] = \frac{1}{4}$$

$$Pr[X^2 + Y^2 \le r^2] = \frac{r^2}{\pi}$$

$$Pr[X > Y] = \frac{1}{6}.$$

Summary

Continuous Probability 1

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b]: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$; $F_X(x) = \frac{x-a}{b-a}$ for $a \le x \le b$.
- 4. $Expo(\lambda)$: $f_X(x) = \lambda \exp\{-\lambda x\} 1\{x \ge 0\}; F_X(x) = 1 - \exp\{-\lambda x\} \text{ for } x \le 0.$
- 5. Target: $f_X(x) = 2x1\{0 \le x \le 1\}$; $F_X(x) = x^2$ for $0 \le x \le 1$.
- 6. Joints: Is this 4/20? Joint pdf: $Pr[X \in (x, x + \delta), Y = (y, y + \delta)) = f_{X,Y}(x, y)\delta^2$.