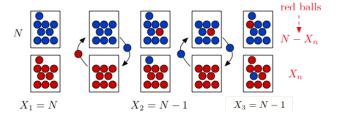
Today

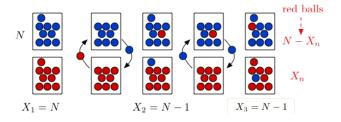
Finish up Conditional Expectation.

Today

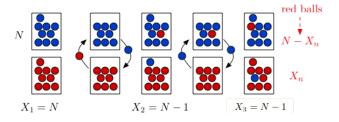
Finish up Conditional Expectation.

Markov Chains.

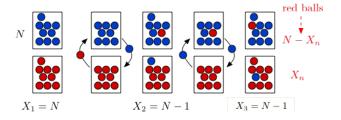




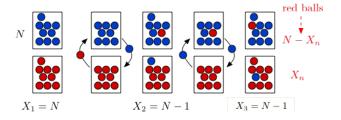
Each step, pick ball from each well-mixed urn.



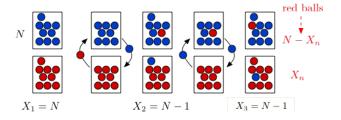
Each step, pick ball from each well-mixed urn. Transfer it to other urn.



Each step, pick ball from each well-mixed urn. Transfer it to other urn. Let X_n be the number of red balls in the bottom urn at step n.

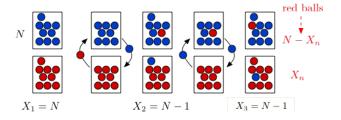


Each step, pick ball from each well-mixed urn. Transfer it to other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?



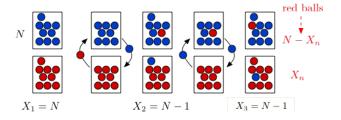
Each step, pick ball from each well-mixed urn. Transfer it to other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m+1$ w.p. p and $X_{n+1} = m-1$ w.p. q



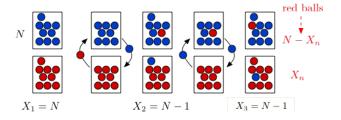
Each step, pick ball from each well-mixed urn. Transfer it to other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m+1$ w.p. p and $X_{n+1} = m-1$ w.p. q where $p = (1 - m/N)^2$ (B goes up, R down)



Each step, pick ball from each well-mixed urn. Transfer it to other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?

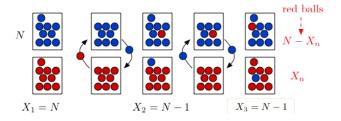
Given $X_n = m$, $X_{n+1} = m+1$ w.p. p and $X_{n+1} = m-1$ w.p. q where $p = (1 - m/N)^2$ (B goes up, R down) and $q = (m/N)^2$ (R goes up, B down).



Each step, pick ball from each well-mixed urn. Transfer it to other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?

Given
$$X_n=m$$
, $X_{n+1}=m+1$ w.p. p and $X_{n+1}=m-1$ w.p. q where $p=(1-m/N)^2$ (B goes up, R down) and $q=(m/N)^2$ (R goes up, B down). Thus,

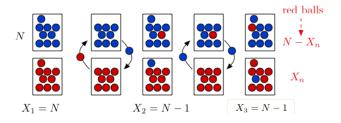
$$E[X_{n+1}|X_n] = X_n + p - q$$



Each step, pick ball from each well-mixed urn. Transfer it to other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?

Given
$$X_n=m$$
, $X_{n+1}=m+1$ w.p. p and $X_{n+1}=m-1$ w.p. q where $p=(1-m/N)^2$ (B goes up, R down) and $q=(m/N)^2$ (R goes up, B down).

Thus, $E[X_{n+1}|X_n] = X_n + p - q = X_n + 1 - 2X_n/N$



Each step, pick ball from each well-mixed urn. Transfer it to other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?

Given
$$X_n=m$$
, $X_{n+1}=m+1$ w.p. p and $X_{n+1}=m-1$ w.p. q where $p=(1-m/N)^2$ (B goes up, R down) and $q=(m/N)^2$ (R goes up, B down).

Thus, $E[X_{n+1}|X_n] = X_n + p - q = X_n + 1 - 2X_n/N = 1 + \rho X_n, \ \rho := (1 - 2/N).$

We saw that $E[X_{n+1}|X_n] = 1 + \rho X_n$, $\rho := (1 - 2/N)$.

We saw that $E[X_{n+1}|X_n] = 1 + \rho X_n$, $\rho := (1 - 2/N)$. Does that make sense?

We saw that $E[X_{n+1}|X_n] = 1 + \rho X_n$, $\rho := (1 - 2/N)$. Does that make sense? Decreases: $X_n > n/2$.

$$E[X_{n+1}] = 1 + \rho E[X_n]$$

$$E[X_{n+1}] = 1 + \rho E[X_n]$$

 $E[X_2] = 1 + \rho N; E[X_3] = 1 + \rho (1 + \rho N) = 1 + \rho + \rho^2 N$

$$E[X_{n+1}] = 1 + \rho E[X_n]$$

$$E[X_2] = 1 + \rho N; E[X_3] = 1 + \rho (1 + \rho N) = 1 + \rho + \rho^2 N$$

$$E[X_4] = 1 + \rho (1 + \rho + \rho^2 N) = 1 + \rho + \rho^2 + \rho^3 N$$

$$E[X_{n+1}] = 1 + \rho E[X_n]$$

$$E[X_2] = 1 + \rho N; E[X_3] = 1 + \rho (1 + \rho N) = 1 + \rho + \rho^2 N$$

$$E[X_4] = 1 + \rho (1 + \rho + \rho^2 N) = 1 + \rho + \rho^2 + \rho^3 N$$

$$E[X_n] = 1 + \rho + \dots + \rho^{n-2} + \rho^{n-1} N.$$

We saw that $E[X_{n+1}|X_n] = 1 + \rho X_n$, $\rho := (1 - 2/N)$. Does that make sense? Decreases: $X_n > n/2$. Increases: $X_n < n/2$. Hence,

$$E[X_{n+1}] = 1 + \rho E[X_n]$$

$$E[X_2] = 1 + \rho N; E[X_3] = 1 + \rho (1 + \rho N) = 1 + \rho + \rho^2 N$$

$$E[X_4] = 1 + \rho (1 + \rho + \rho^2 N) = 1 + \rho + \rho^2 + \rho^3 N$$

$$E[X_n] = 1 + \rho + \dots + \rho^{n-2} + \rho^{n-1} N.$$

Hence,

$$E[X_n] = \frac{1 - \rho^{n-1}}{1 - \rho} + \rho^{n-1} N, n \ge 1.$$

We saw that $E[X_{n+1}|X_n] = 1 + \rho X_n$, $\rho := (1 - 2/N)$. Does that make sense? Decreases: $X_n > n/2$. Increases: $X_n < n/2$. Hence,

$$E[X_{n+1}] = 1 + \rho E[X_n]$$

$$E[X_2] = 1 + \rho N; E[X_3] = 1 + \rho (1 + \rho N) = 1 + \rho + \rho^2 N$$

$$E[X_4] = 1 + \rho (1 + \rho + \rho^2 N) = 1 + \rho + \rho^2 + \rho^3 N$$

$$E[X_n] = 1 + \rho + \dots + \rho^{n-2} + \rho^{n-1} N.$$

Hence,

$$E[X_n] = \frac{1 - \rho^{n-1}}{1 - \rho} + \rho^{n-1} N, n \ge 1.$$

As $n \to \infty$, goes to N/2.

We saw that $E[X_{n+1}|X_n] = 1 + \rho X_n$, $\rho := (1 - 2/N)$. Does that make sense? Decreases: $X_n > n/2$. Increases: $X_n < n/2$. Hence,

$$E[X_{n+1}] = 1 + \rho E[X_n]$$

$$E[X_2] = 1 + \rho N; E[X_3] = 1 + \rho (1 + \rho N) = 1 + \rho + \rho^2 N$$

$$E[X_4] = 1 + \rho (1 + \rho + \rho^2 N) = 1 + \rho + \rho^2 + \rho^3 N$$

$$E[X_n] = 1 + \rho + \dots + \rho^{n-2} + \rho^{n-1} N.$$

Hence,

$$E[X_n] = \frac{1 - \rho^{n-1}}{1 - \rho} + \rho^{n-1} N, n \ge 1.$$

As $n \to \infty$, goes to N/2. Since $1 - \rho = 2/N$.

We saw that $E[X_{n+1}|X_n] = 1 + \rho X_n$, $\rho := (1 - 2/N)$. Does that make sense? Decreases: $X_n > n/2$. Increases: $X_n < n/2$. Hence,

$$E[X_{n+1}] = 1 + \rho E[X_n]$$

$$E[X_2] = 1 + \rho N; E[X_3] = 1 + \rho (1 + \rho N) = 1 + \rho + \rho^2 N$$

$$E[X_4] = 1 + \rho (1 + \rho + \rho^2 N) = 1 + \rho + \rho^2 + \rho^3 N$$

$$E[X_n] = 1 + \rho + \dots + \rho^{n-2} + \rho^{n-1} N.$$

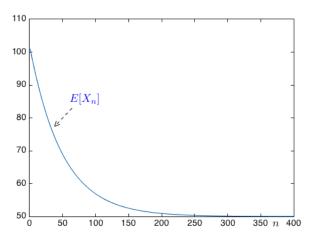
Hence,

$$E[X_n] = \frac{1 - \rho^{n-1}}{1 - \rho} + \rho^{n-1} N, n \ge 1.$$

As $n \to \infty$, goes to N/2. Since $1 - \rho = 2/N$. And $\rho^n \to 0$.

Here is the plot.

Here is the plot.



Consider a social network (e.g., Twitter).

Consider a social network (e.g., Twitter).

You start a rumor

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is bad at making copies).

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is bad at making copies).

You have *d* friends.

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is bad at making copies).

You have d friends. Each of your friend retweets w.p. p.

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is bad at making copies).

You have *d* friends. Each of your friend retweets w.p. *p*.

Each of your friends has *d* friends, etc.

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is bad at making copies).

You have *d* friends. Each of your friend retweets w.p. *p*.

Each of your friends has *d* friends, etc.

Does the rumor spread?

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is bad at making copies).

You have *d* friends. Each of your friend retweets w.p. *p*.

Each of your friends has *d* friends, etc.

Does the rumor spread? Does it die out

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is bad at making copies).

You have *d* friends. Each of your friend retweets w.p. *p*.

Each of your friends has *d* friends, etc.

Does the rumor spread? Does it die out (mercifully)?

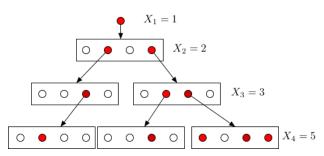
Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is bad at making copies).

You have *d* friends. Each of your friend retweets w.p. *p*.

Each of your friends has *d* friends, etc.

Does the rumor spread? Does it die out (mercifully)?



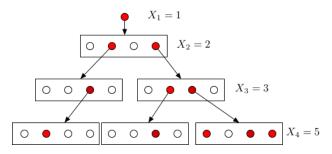
Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is bad at making copies).

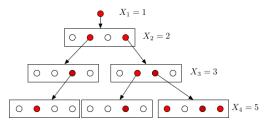
You have *d* friends. Each of your friend retweets w.p. *p*.

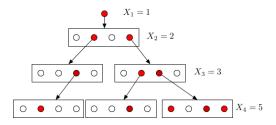
Each of your friends has *d* friends, etc.

Does the rumor spread? Does it die out (mercifully)?

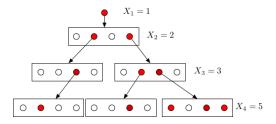


In this example, d = 4.

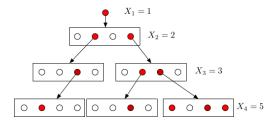




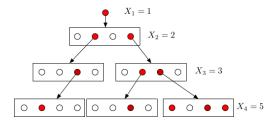
Fact:



Fact: Number of tweets $X = \sum_{n=1}^{\infty} X_n$ where X_n is tweets in level n.



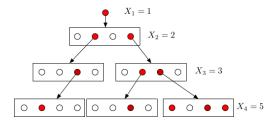
Fact: Number of tweets $X = \sum_{n=1}^{\infty} X_n$ where X_n is tweets in level n. Then, $E[X] < \infty$ iff pd < 1.



Fact: Number of tweets $X = \sum_{n=1}^{\infty} X_n$ where X_n is tweets in level n. Then, $E[X] < \infty$ iff pd < 1.

Proof:

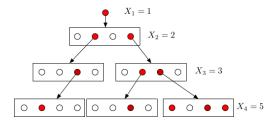
Given $X_n = k$, $X_{n+1} = B(kd, p)$.



Fact: Number of tweets $X = \sum_{n=1}^{\infty} X_n$ where X_n is tweets in level n. Then, $E[X] < \infty$ iff pd < 1.

Proof:

Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1}|X_n = k] = kpd$.

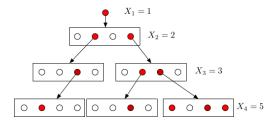


Fact: Number of tweets $X = \sum_{n=1}^{\infty} X_n$ where X_n is tweets in level n. Then, $E[X] < \infty$ iff pd < 1.

Proof:

Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1}|X_n = k] = kpd$.

Thus, $E[X_{n+1}|X_n] = pdX_n$.

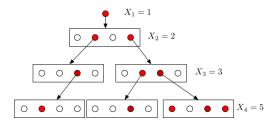


Fact: Number of tweets $X = \sum_{n=1}^{\infty} X_n$ where X_n is tweets in level n. Then, $E[X] < \infty$ iff pd < 1.

Proof:

Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1}|X_n = k] = kpd$.

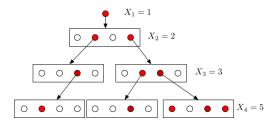
Thus, $E[X_{n+1}|X_n] = pdX_n$. Consequently, $E[X_n] = (pd)^{n-1}, n \ge 1$.



Fact: Number of tweets $X = \sum_{n=1}^{\infty} X_n$ where X_n is tweets in level n. Then, $E[X] < \infty$ iff pd < 1.

Proof:

Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1}|X_n = k] = kpd$. Thus, $E[X_{n+1}|X_n] = pdX_n$. Consequently, $E[X_n] = (pd)^{n-1}$, $n \ge 1$. If pd < 1, then $E[X_1 + \dots + X_n] \le (1 - pd)^{-1}$



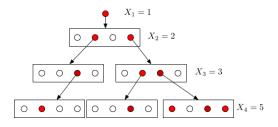
Fact: Number of tweets $X = \sum_{n=1}^{\infty} X_n$ where X_n is tweets in level n. Then, $E[X] < \infty$ iff pd < 1.

Proof:

Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1}|X_n = k] = kpd$.

Thus, $E[X_{n+1}|X_n] = pdX_n$. Consequently, $E[X_n] = (pd)^{n-1}, n \ge 1$.

If pd < 1, then $E[X_1 + \cdots + X_n] \le (1 - pd)^{-1} \Longrightarrow E[X] \le (1 - pd)^{-1}$.



Fact: Number of tweets $X = \sum_{n=1}^{\infty} X_n$ where X_n is tweets in level n. Then, $E[X] < \infty$ iff pd < 1.

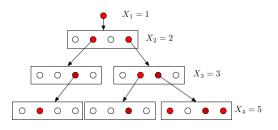
Proof:

Given
$$X_n = k$$
, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1} | X_n = k] = kpd$.

Thus,
$$E[X_{n+1}|X_n] = pdX_n$$
. Consequently, $E[X_n] = (pd)^{n-1}, n \ge 1$.

If
$$pd < 1$$
, then $E[X_1 + \cdots + X_n] \le (1 - pd)^{-1} \Longrightarrow E[X] \le (1 - pd)^{-1}$.

If $pd \ge 1$, then for all C one can find n s.t. $E[X] > E[X_1 + \cdots + X_n] > C$.



Fact: Number of tweets $X = \sum_{n=1}^{\infty} X_n$ where X_n is tweets in level n. Then, $E[X] < \infty$ iff pd < 1.

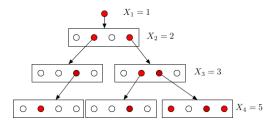
Proof:

Given
$$X_n = k$$
, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1} | X_n = k] = kpd$.

Thus,
$$E[X_{n+1}|X_n] = pdX_n$$
. Consequently, $E[X_n] = (pd)^{n-1}, n \ge 1$.

If
$$pd < 1$$
, then $E[X_1 + \dots + X_n] \le (1 - pd)^{-1} \Longrightarrow E[X] \le (1 - pd)^{-1}$.

If $pd \ge 1$, then for all C one can find n s.t. $E[X] > E[X_1 + \cdots + X_n] > C$.



Fact: Number of tweets $X = \sum_{n=1}^{\infty} X_n$ where X_n is tweets in level n. Then, $E[X] < \infty$ iff pd < 1.

Proof:

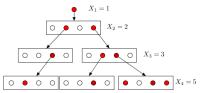
Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1} | X_n = k] = kpd$.

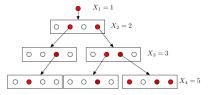
Thus, $E[X_{n+1}|X_n] = pdX_n$. Consequently, $E[X_n] = (pd)^{n-1}, n \ge 1$.

If
$$pd < 1$$
, then $E[X_1 + \cdots + X_n] \le (1 - pd)^{-1} \Longrightarrow E[X] \le (1 - pd)^{-1}$.

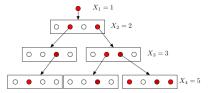
If $pd \ge 1$, then for all C one can find n s.t. $E[X] > E[X_1 + \cdots + X_n] > C$.

In fact, one can show that
$$pd \ge 1 \implies Pr[X = \infty] > 0$$
.

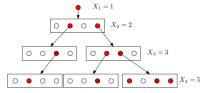




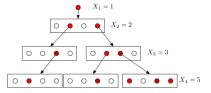
An easy extension:



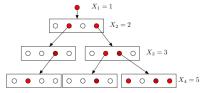
An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$.



An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$. Then, the same fact holds.

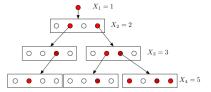


An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$. Then, the same fact holds. Why?



An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$. Then, the same fact holds.

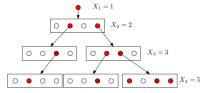
Why? Given $X_n = k$.



An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$. Then, the same fact holds.

Why? Given $X_n = k$.

 $D_1 = d_1, \dots, D_k = d_k$ – numbers of friends of these X_n people.

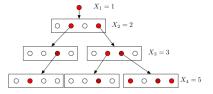


An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$. Then, the same fact holds.

Why? Given $X_n = k$.

 $D_1 = d_1, \dots, D_k = d_k$ – numbers of friends of these X_n people.

 $\implies X_{n+1} = B(d_1 + \cdots + d_k, p).$

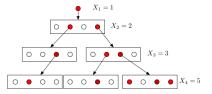


An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$. Then, the same fact holds.

Why? Given $X_n = k$.

 $D_1 = d_1, \dots, D_k = d_k$ – numbers of friends of these X_n people. $\Rightarrow X_{n+1} = B(d_1 + \dots + d_k, p)$. Hence,

$$E[X_{n+1}|X_n=k,D_1=d_1,\ldots,D_k=d_k]=p(d_1+\cdots+d_k).$$



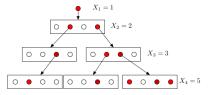
An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$. Then, the same fact holds.

Why? Given $X_n = k$.

 $D_1 = d_1, \dots, D_k = d_k$ – numbers of friends of these X_n people. $\Rightarrow X_{n+1} = B(d_1 + \dots + d_k, p)$. Hence,

$$E[X_{n+1}|X_n=k,D_1=d_1,\ldots,D_k=d_k]=p(d_1+\cdots+d_k).$$

Thus, $E[X_{n+1}|X_n = k, D_1, ..., D_k] = p(D_1 + ... + D_k)$.



An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$. Then, the same fact holds.

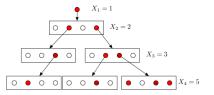
Why? Given $X_n = k$.

 $D_1 = d_1, \dots, D_k = d_k$ – numbers of friends of these X_n people. $\Rightarrow X_{n+1} = B(d_1 + \dots + d_k, p)$. Hence,

$$E[X_{n+1}|X_n=k,D_1=d_1,\ldots,D_k=d_k]=p(d_1+\cdots+d_k).$$

Thus, $E[X_{n+1}|X_n = k, D_1, ..., D_k] = p(D_1 + ... + D_k)$.

Consequently, $E[X_{n+1}|X_n=k]=E[p(D_1+\cdots+D_k)]=pdk$.



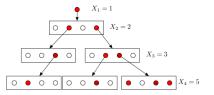
An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$. Then, the same fact holds.

Why? Given $X_n = k$.

 $D_1 = d_1, \dots, D_k = d_k$ – numbers of friends of these X_n people. $\implies X_{n+1} = B(d_1 + \dots + d_k, p)$. Hence,

$$E[X_{n+1}|X_n=k,D_1=d_1,\ldots,D_k=d_k]=p(d_1+\cdots+d_k).$$

Thus, $E[X_{n+1}|X_n = k, D_1, ..., D_k] = p(D_1 + ... + D_k)$. Consequently, $E[X_{n+1}|X_n = k] = E[p(D_1 + ... + D_k)] = pdk$. Finally, $E[X_{n+1}|X_n] = pdX_n$.



An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$. Then, the same fact holds.

Why? Given $X_n = k$.

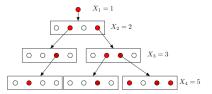
 $D_1 = d_1, \dots, D_k = d_k$ – numbers of friends of these X_n people. $\implies X_{n+1} = B(d_1 + \dots + d_k, p)$. Hence,

$$E[X_{n+1}|X_n = k, D_1 = d_1, \dots, D_k = d_k] = p(d_1 + \dots + d_k).$$

Thus, $E[X_{n+1}|X_n = k, D_1, ..., D_k] = p(D_1 + \cdots + D_k).$

Consequently, $E[X_{n+1}|X_n=k]=E[p(D_1+\cdots+D_k)]=pdk$.

Finally, $E[X_{n+1}|X_n] = pdX_n$, and $E[X_{n+1}] = pdE[X_n]$.



An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$. Then, the same fact holds.

Why? Given $X_n = k$.

 $D_1 = d_1, \dots, D_k = d_k$ – numbers of friends of these X_n people. $\Rightarrow X_{n+1} = B(d_1 + \dots + d_k, p)$. Hence,

$$E[X_{n+1}|X_n=k,D_1=d_1,\ldots,D_k=d_k]=p(d_1+\cdots+d_k).$$

Thus, $E[X_{n+1}|X_n = k, D_1, \dots, D_k] = p(D_1 + \dots + D_k)$.

Consequently, $E[X_{n+1}|X_n=k]=E[p(D_1+\cdots+D_k)]=pdk$.

Finally, $E[X_{n+1}|X_n] = pdX_n$, and $E[X_{n+1}] = pdE[X_n]$.

We conclude as before.

Here is an extension of an identity we used in the last slide.

Here is an extension of an identity we used in the last slide.

Theorem Wald's Identity

Here is an extension of an identity we used in the last slide.

Theorem Wald's Identity

Assume that X_1, X_2, \dots and Z are independent, where

Here is an extension of an identity we used in the last slide.

Theorem Wald's Identity

Assume that X_1, X_2, \ldots and Z are independent, where

Z takes values in $\{0,1,2,\ldots\}$

Here is an extension of an identity we used in the last slide.

Theorem Wald's Identity

Assume that X_1, X_2, \dots and Z are independent, where

Z takes values in $\{0,1,2,\ldots\}$

and $E[X_n] = \mu$ for all $n \ge 1$.

Here is an extension of an identity we used in the last slide.

Theorem Wald's Identity

Assume that X_1, X_2, \dots and Z are independent, where

$$Z$$
 takes values in $\{0, 1, 2, \ldots\}$

and
$$E[X_n] = \mu$$
 for all $n \ge 1$.

Then,

$$E[X_1+\cdots+X_Z]=\mu E[Z].$$

Here is an extension of an identity we used in the last slide.

Theorem Wald's Identity

Assume that X_1, X_2, \dots and Z are independent, where

$$Z$$
 takes values in $\{0,1,2,\ldots\}$

and
$$E[X_n] = \mu$$
 for all $n \ge 1$.

Then,

$$E[X_1+\cdots+X_Z]=\mu E[Z].$$

Proof:

Here is an extension of an identity we used in the last slide.

Theorem Wald's Identity

Assume that X_1, X_2, \ldots and Z are independent, where

$$Z$$
 takes values in $\{0,1,2,\ldots\}$

and
$$E[X_n] = \mu$$
 for all $n \ge 1$.

Then,

$$E[X_1+\cdots+X_Z]=\mu E[Z].$$

$$E[X_1+\cdots+X_Z|Z=k]=\mu k.$$

Here is an extension of an identity we used in the last slide.

Theorem Wald's Identity

Assume that X_1, X_2, \dots and Z are independent, where

$$Z$$
 takes values in $\{0,1,2,\ldots\}$

and
$$E[X_n] = \mu$$
 for all $n \ge 1$.

Then,

$$E[X_1+\cdots+X_Z]=\mu E[Z].$$

$$E[X_1+\cdots+X_Z|Z=k]=\mu k.$$

Thus,
$$E[X_1 + \cdots + X_Z | Z] = \mu Z$$
.

Here is an extension of an identity we used in the last slide.

Theorem Wald's Identity

Assume that $X_1, X_2, ...$ and Z are independent, where

$$Z$$
 takes values in $\{0, 1, 2, \ldots\}$

and
$$E[X_n] = \mu$$
 for all $n \ge 1$.

Then,

$$E[X_1+\cdots+X_Z]=\mu E[Z].$$

$$E[X_1+\cdots+X_Z|Z=k]=\mu k.$$

Thus,
$$E[X_1 + \cdots + X_Z | Z] = \mu Z$$
.

Hence,
$$E[X_1 + \cdots + X_Z] = E[\mu Z] = \mu E[Z]$$
.

Here is an extension of an identity we used in the last slide.

Theorem Wald's Identity

Assume that X_1, X_2, \dots and Z are independent, where

Z takes values in $\{0,1,2,\ldots\}$

and $E[X_n] = \mu$ for all $n \ge 1$.

Then,

$$E[X_1+\cdots+X_Z]=\mu E[Z].$$

$$E[X_1+\cdots+X_Z|Z=k]=\mu k.$$

Thus,
$$E[X_1 + \cdots + X_Z | Z] = \mu Z$$
.

Hence,
$$E[X_1 + \cdots + X_Z] = E[\mu Z] = \mu E[Z]$$
.

Theorem

E[Y|X] is the 'best' guess about Y based on X.

Theorem

E[Y|X] is the 'best' guess about Y based on X.

Specifically, it is the function g(X) of X that

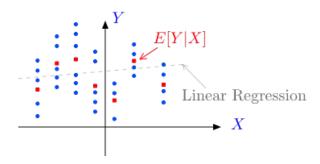
minimizes $E[(Y-g(X))^2]$.

Theorem

E[Y|X] is the 'best' guess about Y based on X.

Specifically, it is the function g(X) of X that

minimizes $E[(Y-g(X))^2]$.



Theorem CE = MMSE

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y - g(X))^2]$.

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$. **Proof:**

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$. **Proof:**

Let h(X) be any function of X.

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$. **Proof:**

Let h(X) be any function of X. Then

$$E[(Y - h(X))^2] =$$

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$. **Proof:**

Let h(X) be any function of X. Then

$$E[(Y - h(X))^{2}] = E[(Y - g(X) + g(X) - h(X))^{2}]$$

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$. **Proof:**

Let h(X) be any function of X. Then

$$E[(Y - h(X))^{2}] = E[(Y - g(X) + g(X) - h(X))^{2}]$$

$$= E[(Y - g(X))^{2}] + E[(g(X) - h(X))^{2}]$$

$$+2E[(Y - g(X))(g(X) - h(X))].$$

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$. **Proof:**

Let h(X) be any function of X. Then

$$E[(Y - h(X))^{2}] = E[(Y - g(X) + g(X) - h(X))^{2}]$$

$$= E[(Y - g(X))^{2}] + E[(g(X) - h(X))^{2}]$$

$$+2E[(Y - g(X))(g(X) - h(X))].$$

But,

$$E[(Y-g(X))(g(X)-h(X))]=0$$
 by the projection property.

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$. **Proof:**

Let h(X) be any function of X. Then

$$E[(Y - h(X))^{2}] = E[(Y - g(X) + g(X) - h(X))^{2}]$$

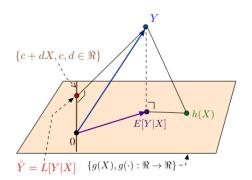
$$= E[(Y - g(X))^{2}] + E[(g(X) - h(X))^{2}]$$

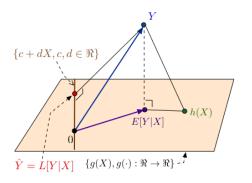
$$+2E[(Y - g(X))(g(X) - h(X))].$$

But,

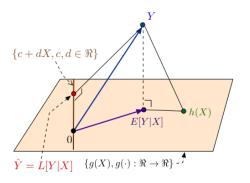
$$E[(Y-g(X))(g(X)-h(X))]=0$$
 by the projection property.

Thus,
$$E[(Y - h(X))^2] \ge E[(Y - g(X))^2]$$
.

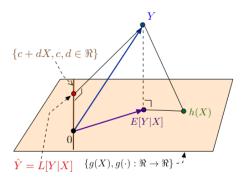




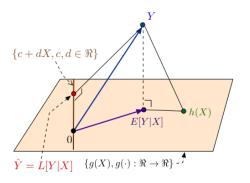
L[Y|X] is the projection of Y on $\{a+bX, a, b \in \Re\}$:



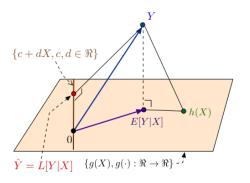
L[Y|X] is the projection of Y on $\{a+bX, a, b \in \Re\}$: LLSE



L[Y|X] is the projection of Y on $\{a+bX,a,b\in\Re\}$: LLSE E[Y|X] is the projection of Y on $\{g(X),g(\cdot):\Re\to\Re\}$:

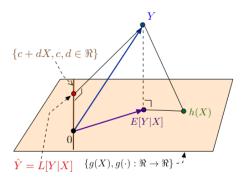


L[Y|X] is the projection of Y on $\{a+bX,a,b\in\Re\}$: LLSE E[Y|X] is the projection of Y on $\{g(X),g(\cdot):\Re\to\Re\}$: MMSE.



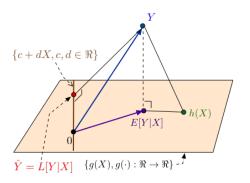
L[Y|X] is the projection of Y on $\{a+bX,a,b\in\Re\}$: LLSE E[Y|X] is the projection of Y on $\{g(X),g(\cdot):\Re\to\Re\}$: MMSE.

Functions of *X* are linear subspace?



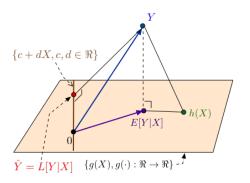
L[Y|X] is the projection of Y on $\{a+bX,a,b\in\Re\}$: LLSE E[Y|X] is the projection of Y on $\{g(X),g(\cdot):\Re\to\Re\}$: MMSE.

Functions of X are linear subspace? Vector $(g(X(\omega_1),...,g(X(\omega_{\Omega})))$.



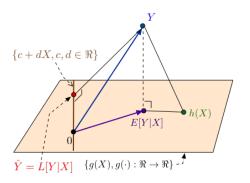
L[Y|X] is the projection of Y on $\{a+bX,a,b\in\Re\}$: LLSE E[Y|X] is the projection of Y on $\{g(X),g(\cdot):\Re\to\Re\}$: MMSE.

Functions of X are linear subspace? Vector $(g(X(\omega_1), \dots, g(X(\omega_\Omega)))$. Coordinates ω and ω' with $X(\omega) = X(\omega')$



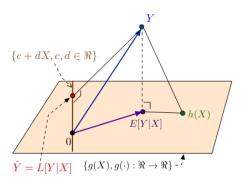
L[Y|X] is the projection of Y on $\{a+bX,a,b\in\Re\}$: LLSE E[Y|X] is the projection of Y on $\{g(X),g(\cdot):\Re\to\Re\}$: MMSE.

Functions of X are linear subspace? Vector $(g(X(\omega_1), \ldots, g(X(\omega_\Omega)))$. Coordinates ω and ω' with $X(\omega) = X(\omega')$ have same value:



L[Y|X] is the projection of Y on $\{a+bX,a,b\in\Re\}$: LLSE E[Y|X] is the projection of Y on $\{g(X),g(\cdot):\Re\to\Re\}$: MMSE.

Functions of X are linear subspace? Vector $(g(X(\omega_1), \dots, g(X(\omega_\Omega)))$. Coordinates ω and ω' with $X(\omega) = X(\omega')$ have same value: $v_\omega = v_{\omega'}$.



L[Y|X] is the projection of Y on $\{a+bX,a,b\in\Re\}$: LLSE E[Y|X] is the projection of Y on $\{g(X),g(\cdot):\Re\to\Re\}$: MMSE.

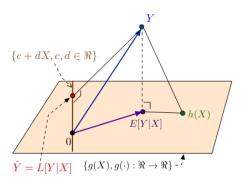
Functions of *X* are linear subspace?

Vector $(g(X(\omega_1),...,g(X(\omega_{\Omega}))).$

Coordinates ω and ω' with $X(\omega) = X(\omega')$

have same value: $v_{\omega} = v_{\omega'}$.

Linear constraints!



L[Y|X] is the projection of Y on $\{a+bX,a,b\in\Re\}$: LLSE E[Y|X] is the projection of Y on $\{g(X),g(\cdot):\Re\to\Re\}$: MMSE.

Functions of X are linear subspace? Vector $(g(X(\omega_1), \dots, g(X(\omega_\Omega)))$. Coordinates ω and ω' with $X(\omega) = X(\omega')$

have same value: $v_{\omega} = v_{\omega'}$.

Linear constraints! Linear Subspace.

Conditional Expectation

▶ Definition: $E[Y|X] := \sum_{y} yPr[Y = y|X = x]$

- ▶ Definition: $E[Y|X] := \sum_{y} yPr[Y = y|X = x]$
- ▶ Properties: Linearity, $Y E[Y|X] \perp h(X)$;

- ▶ Definition: $E[Y|X] := \sum_{y} yPr[Y = y|X = x]$
- ▶ Properties: Linearity, $Y E[Y|X] \perp h(X)$; E[E[Y|X]] = E[Y]

- ▶ Definition: $E[Y|X] := \sum_{y} y Pr[Y = y|X = x]$
- ▶ Properties: Linearity, $Y E[Y|X] \perp h(X)$; E[E[Y|X]] = E[Y]
- Some Applications:

- ▶ Definition: $E[Y|X] := \sum_{y} y Pr[Y = y|X = x]$
- ▶ Properties: Linearity, $Y E[Y|X] \perp h(X)$; E[E[Y|X]] = E[Y]
- Some Applications:
 - ▶ Calculating E[Y|X]

- ▶ Definition: $E[Y|X] := \sum_{y} y Pr[Y = y|X = x]$
- ▶ Properties: Linearity, $Y E[Y|X] \perp h(X)$; E[E[Y|X]] = E[Y]
- Some Applications:
 - ▶ Calculating E[Y|X]
 - Diluting

- ▶ Definition: $E[Y|X] := \sum_{y} y Pr[Y = y|X = x]$
- ▶ Properties: Linearity, $Y E[Y|X] \perp h(X)$; E[E[Y|X]] = E[Y]
- Some Applications:
 - ▶ Calculating E[Y|X]
 - Diluting
 - Mixing

Summary

Conditional Expectation

- ▶ Definition: $E[Y|X] := \sum_{y} y Pr[Y = y|X = x]$
- ▶ Properties: Linearity, $Y E[Y|X] \perp h(X)$; E[E[Y|X]] = E[Y]
- Some Applications:
 - ▶ Calculating E[Y|X]
 - Diluting
 - Mixing
 - Rumors

Summary

Conditional Expectation

- ▶ Definition: $E[Y|X] := \sum_{y} y Pr[Y = y|X = x]$
- ▶ Properties: Linearity, $Y E[Y|X] \perp h(X)$; E[E[Y|X]] = E[Y]
- Some Applications:
 - ▶ Calculating E[Y|X]
 - Diluting
 - Mixing
 - Rumors
 - Wald

Summary

Conditional Expectation

- ▶ Definition: $E[Y|X] := \sum_{y} y Pr[Y = y|X = x]$
- ▶ Properties: Linearity, $Y E[Y|X] \perp h(X)$; E[E[Y|X]] = E[Y]
- Some Applications:
 - ▶ Calculating E[Y|X]
 - Diluting
 - Mixing
 - Rumors
 - Wald
- ▶ MMSE: E[Y|X] minimizes $E[(Y-g(X))^2]$ over all $g(\cdot)$

CS70: Markov Chains.

Markov Chains 1

CS70: Markov Chains.

Markov Chains 1

CS70: Markov Chains.

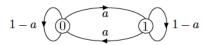
Markov Chains 1

- 1. Examples
- 2. Definition
- 3. First Passage Time

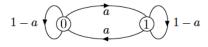
Here is a symmetric two-state Markov chain.

Here is a symmetric two-state Markov chain. It describes a random motion in $\{0,1\}$.

Here is a symmetric two-state Markov chain. It describes a random motion in $\{0,1\}$. Here, a is the probability that the state changes in the next step.

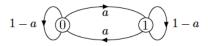


Here is a symmetric two-state Markov chain. It describes a random motion in $\{0,1\}$. Here, a is the probability that the state changes in the next step.

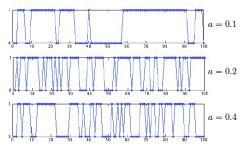


Let's simulate the Markov chain:

Here is a symmetric two-state Markov chain. It describes a random motion in $\{0,1\}$. Here, a is the probability that the state changes in the next step.

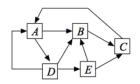


Let's simulate the Markov chain:



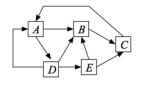
Five-State Markov Chain

At each step, the MC follows one of the outgoing arrows of the current state, with equal probabilities.



Five-State Markov Chain

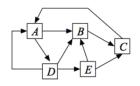
At each step, the MC follows one of the outgoing arrows of the current state, with equal probabilities.



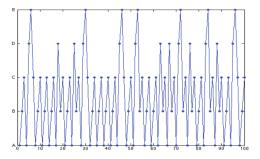
Let's simulate the Markov chain:

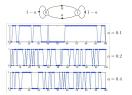
Five-State Markov Chain

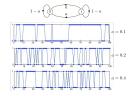
At each step, the MC follows one of the outgoing arrows of the current state, with equal probabilities.



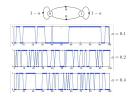
Let's simulate the Markov chain:



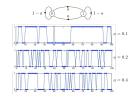




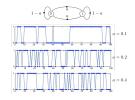
▶ A finite set of states: $\mathscr{X} = \{1, 2, ..., K\}$



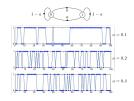
- ▶ A finite set of states: $\mathscr{X} = \{1, 2, ..., K\}$
- ▶ A probability distribution π_0 on \mathscr{X} :



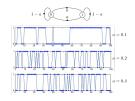
- ▶ A finite set of states: $\mathscr{X} = \{1, 2, ..., K\}$
- ▶ A probability distribution π_0 on \mathscr{X} : $\pi_0(i) \ge 0, \sum_i \pi_0(i) = 1$



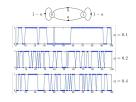
- ▶ A finite set of states: $\mathscr{X} = \{1, 2, ..., K\}$
- ▶ A probability distribution π_0 on \mathscr{X} : $\pi_0(i) \ge 0, \sum_i \pi_0(i) = 1$
- ► Transition probabilities: P(i,j) for $i,j \in \mathcal{X}$



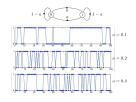
- ▶ A finite set of states: $\mathscr{X} = \{1, 2, ..., K\}$
- ▶ A probability distribution π_0 on \mathscr{X} : $\pi_0(i) \ge 0, \sum_i \pi_0(i) = 1$
- ► Transition probabilities: P(i,j) for $i,j \in \mathcal{X}$ $P(i,j) \ge 0, \forall i,j;$



- ▶ A finite set of states: $\mathscr{X} = \{1, 2, ..., K\}$
- ▶ A probability distribution π_0 on \mathscr{X} : $\pi_0(i) \geq 0, \sum_i \pi_0(i) = 1$
- ► Transition probabilities: P(i,j) for $i,j \in \mathscr{X}$ $P(i,j) \ge 0, \forall i,j; \sum_i P(i,j) = 1, \forall i$



- ▶ A finite set of states: $\mathscr{X} = \{1, 2, ..., K\}$
- ▶ A probability distribution π_0 on \mathscr{X} : $\pi_0(i) \geq 0, \sum_i \pi_0(i) = 1$
- ► Transition probabilities: P(i,j) for $i,j \in \mathscr{X}$ $P(i,j) \ge 0, \forall i,j; \sum_{j} P(i,j) = 1, \forall i$
- ▶ $\{X_n, n \ge 0\}$ is defined so that

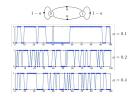


- ▶ A finite set of states: $\mathscr{X} = \{1, 2, ..., K\}$
- ▶ A probability distribution π_0 on \mathscr{X} : $\pi_0(i) \ge 0, \sum_i \pi_0(i) = 1$
- ► Transition probabilities: P(i,j) for $i,j \in \mathcal{X}$

$$P(i,j) \ge 0, \forall i,j; \sum_i P(i,j) = 1, \forall i$$

▶ $\{X_n, n \ge 0\}$ is defined so that

$$Pr[X_0 = i] = \pi_0(i), i \in \mathscr{X}$$

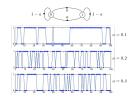


- ▶ A finite set of states: $\mathscr{X} = \{1, 2, ..., K\}$
- ▶ A probability distribution π_0 on \mathscr{X} : $\pi_0(i) \geq 0, \sum_i \pi_0(i) = 1$
- ► Transition probabilities: P(i,j) for $i,j \in \mathcal{X}$

$$P(i,j) \ge 0, \forall i,j; \sum_{i} P(i,j) = 1, \forall i$$

• $\{X_n, n \ge 0\}$ is defined so that

$$Pr[X_0 = i] = \pi_0(i), i \in \mathscr{X}$$
 (initial distribution)



- ▶ A finite set of states: $\mathscr{X} = \{1, 2, ..., K\}$
- ▶ A probability distribution π_0 on \mathscr{X} : $\pi_0(i) \geq 0, \sum_i \pi_0(i) = 1$
- ► Transition probabilities: P(i,j) for $i,j \in \mathcal{X}$

$$P(i,j) \ge 0, \forall i,j; \sum_i P(i,j) = 1, \forall i$$

▶ $\{X_n, n \ge 0\}$ is defined so that

$$Pr[X_0 = i] = \pi_0(i), i \in \mathscr{X}$$
 (initial distribution)

$$Pr[X_{n+1} = j \mid X_0, ..., X_n = i] = P(i,j), i,j \in \mathscr{X}.$$

Let's flip a coin with Pr[H] = p until we get H.

Let's flip a coin with Pr[H] = p until we get H. How many flips,

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

$$ightharpoonup X_0 = S$$

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

- ➤ X₀ = S (start)
- ▶ $X_n = S$ for $n \ge 1$, if last flip was T and no H yet

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

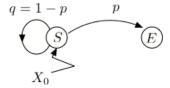
- ► *X*₀ = *S* (start)
- ▶ $X_n = S$ for $n \ge 1$, if last flip was T and no H yet
- ▶ $X_n = E$ for $n \ge 1$, if we already got H

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

- ► *X*₀ = *S* (start)
- ▶ $X_n = S$ for $n \ge 1$, if last flip was T and no H yet
- ▶ $X_n = E$ for $n \ge 1$, if we already got H (end)

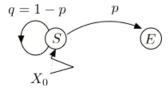
Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

- ► *X*₀ = *S* (start)
- ▶ $X_n = S$ for $n \ge 1$, if last flip was T and no H yet
- ▶ $X_n = E$ for $n \ge 1$, if we already got H (end)

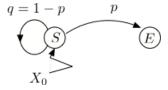


Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

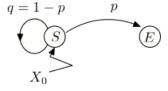
- ► *X*₀ = *S* (start)
- ▶ $X_n = S$ for $n \ge 1$, if last flip was T and no H yet
- ▶ $X_n = E$ for $n \ge 1$, if we already got H (end)



Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

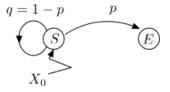


Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



Let $\beta(S)$ be the average time until E, starting from S.

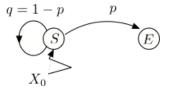
Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



Let $\beta(S)$ be the average time until E, starting from S. Then,

$$\beta(S)=1+q\beta(S)+p0.$$

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



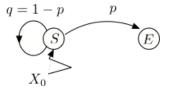
Let $\beta(S)$ be the average time until E, starting from S.

Then,

$$\beta(S)=1+q\beta(S)+p0.$$

(See next slide.)

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



Let $\beta(S)$ be the average time until E, starting from S.

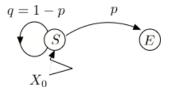
Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

(See next slide.) Hence,

$$p\beta(S)=1$$
,

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



Let $\beta(S)$ be the average time until E, starting from S.

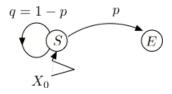
Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

(See next slide.) Hence,

$$p\beta(S) = 1$$
, so that $\beta(S) = 1/p$.

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



Let $\beta(S)$ be the average time until E, starting from S.

Then,

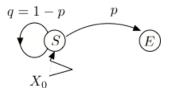
$$\beta(S) = 1 + q\beta(S) + p0.$$

(See next slide.) Hence,

$$p\beta(S) = 1$$
, so that $\beta(S) = 1/p$.

Note: Time until E is G(p).

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



Let $\beta(S)$ be the average time until E, starting from S.

Then,

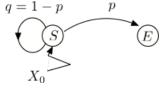
$$\beta(S) = 1 + q\beta(S) + p0.$$

(See next slide.) Hence,

$$p\beta(S) = 1$$
, so that $\beta(S) = 1/p$.

Note: Time until E is G(p). The mean of G(p) is 1/p!!!

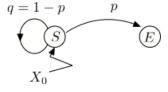
Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



Let $\beta(S)$ be the average time until E. Then,

$$\beta(S)=1+q\beta(S)+p0.$$

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



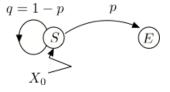
Let $\beta(S)$ be the average time until E.

Then,

$$\beta(S)=1+q\beta(S)+p0.$$

Justification:

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



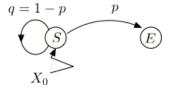
Let $\beta(S)$ be the average time until E.

Then,

$$\beta(S)=1+q\beta(S)+p0.$$

Justification: N – number of steps until E, starting from S.

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

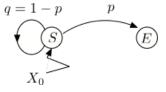


Let $\beta(S)$ be the average time until E. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

Justification: N – number of steps until E, starting from S. N' – number of steps until E, after the second visit to S.

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

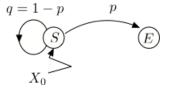


Let $\beta(S)$ be the average time until E. Then,

$$\beta(S)=1+q\beta(S)+p0.$$

Justification: N – number of steps until E, starting from S. N' – number of steps until E, after the second visit to S. And $Z = 1\{\text{first flip } = H\}$.

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



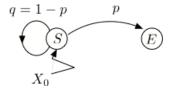
Let $\beta(S)$ be the average time until E. Then,

$$\beta(S)=1+q\beta(S)+p0.$$

Justification: N – number of steps until E, starting from S. N' – number of steps until E, after the second visit to S. And $Z = 1\{$ first flip $= H\}$. Then,

$$N = 1 + (1 - Z) \times N' + Z \times 0.$$

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



Let $\beta(S)$ be the average time until E. Then,

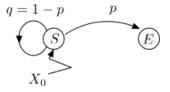
$$\beta(S) = 1 + q\beta(S) + p0.$$

Justification: N – number of steps until E, starting from S. N' – number of steps until E, after the second visit to S. And $Z = 1\{$ first flip $= H\}$. Then,

$$N = 1 + (1 - Z) \times N' + Z \times 0.$$

Z and N' are independent.

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



Let $\beta(S)$ be the average time until E. Then,

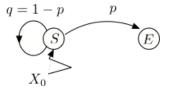
$$\beta(S) = 1 + q\beta(S) + p0.$$

Justification: N – number of steps until E, starting from S. N' – number of steps until E, after the second visit to S. And $Z = 1\{$ first flip $= H\}$. Then,

$$N=1+(1-Z)\times N'+Z\times 0.$$

Z and N' are independent. Also, $E[N'] = E[N] = \beta(S)$.

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



Let $\beta(S)$ be the average time until E. Then,

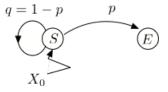
$$\beta(S) = 1 + q\beta(S) + p0.$$

Justification: N – number of steps until E, starting from S. N' – number of steps until E, after the second visit to S. And $Z = 1\{$ first flip $= H\}$. Then,

$$N=1+(1-Z)\times N'+Z\times 0.$$

Z and N' are independent. Also, $E[N'] = E[N] = \beta(S)$. Hence, taking expectation,

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



Let $\beta(S)$ be the average time until E. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

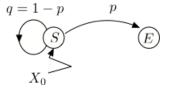
Justification: N – number of steps until E, starting from S. N' – number of steps until E, after the second visit to S. And Z = 1 {first flip = H}. Then,

$$N = 1 + (1 - Z) \times N' + Z \times 0.$$

Z and N' are independent. Also, $E[N'] = E[N] = \beta(S)$. Hence, taking expectation,

$$\beta(S) = E[N] = 1 + (1 - p)E[N'] + p0$$

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



Let $\beta(S)$ be the average time until E. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

Justification: N – number of steps until E, starting from S. N' – number of steps until E, after the second visit to S. And $Z = 1\{\text{first flip } = H\}$. Then,

$$N = 1 + (1 - Z) \times N' + Z \times 0.$$

Z and *N'* are independent. Also, $E[N'] = E[N] = \beta(S)$. Hence, taking expectation,

$$\beta(S) = E[N] = 1 + (1 - p)E[N'] + p0 = 1 + q\beta(S) + p0.$$

Let's flip a coin with Pr[H] = p until we get two consecutive Hs.

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips,

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average?

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average?

HTHTTTHTHTHTTHTHH

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average?

$$X_0 = S$$

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average?

- ➤ X₀ = S (start)
- $ightharpoonup X_n = E$, if we already got two consecutive Hs

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average?

- ➤ X₀ = S (start)
- $ightharpoonup X_n = E$, if we already got two consecutive Hs (end)

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average?

- ➤ X₀ = S (start)
- $ightharpoonup X_n = E$, if we already got two consecutive Hs (end)
- $ightharpoonup X_n = T$, if last flip was T and we are not done

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average?

- ➤ X₀ = S (start)
- $ightharpoonup X_n = E$, if we already got two consecutive Hs (end)
- $ightharpoonup X_n = T$, if last flip was T and we are not done
- $ightharpoonup X_n = H$, if last flip was H and we are not done

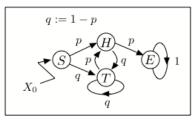
Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average?

- ➤ X₀ = S (start)
- $ightharpoonup X_n = E$, if we already got two consecutive Hs (end)
- $ightharpoonup X_n = T$, if last flip was T and we are not done
- $X_n = H$, if last flip was H and we are not done

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average?

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average? Here is a picture:

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average? Here is a picture:



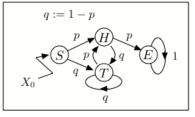
S: Start

H: Last flip = H

T: Last flip = T

E: Done

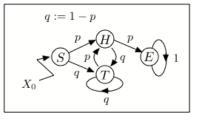
Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average? Here is a picture:



S: Start H: Last flip = H T: Last flip = T E: Done

Let $\beta(i)$ be the average time from state i until the MC hits state E.

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average? Here is a picture:

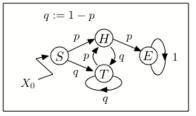


S: Start H: Last flip = H T: Last flip = T

E: Done

Let $\beta(i)$ be the average time from state i until the MC hits state E. We claim that

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average? Here is a picture:

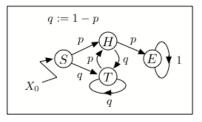


S: Start H: Last flip = H T: Last flip = T

E: Done

Let $\beta(i)$ be the average time from state i until the MC hits state E. We claim that (these are called the first step equations)

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average? Here is a picture:



S: Start

H: Last flip = H

T: Last flip = T

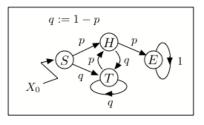
E: Done

Let $\beta(i)$ be the average time from state i until the MC hits state E.

We claim that (these are called the first step equations)

$$\beta(S) = 1 + p\beta(H) + q\beta(T)$$

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average? Here is a picture:



S: Start H: Last flip = H

T: Last flip = T

E: Done

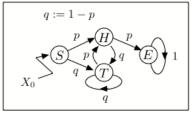
Let $\beta(i)$ be the average time from state i until the MC hits state E.

We claim that (these are called the first step equations)

$$\beta(S) = 1 + p\beta(H) + q\beta(T)$$

$$\beta(H) = 1 + p0 + q\beta(T)$$

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average? Here is a picture:



S: Start H: Last flip = H T: Last flip = T

E: Done

Let $\beta(i)$ be the average time from state i until the MC hits state E.

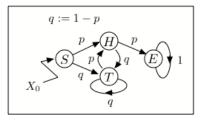
We claim that (these are called the first step equations)

$$\beta(S) = 1 + p\beta(H) + q\beta(T)$$

$$\beta(H) = 1 + p0 + q\beta(T)$$

$$\beta(T) = 1 + p\beta(H) + q\beta(T).$$

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average? Here is a picture:



S: Start

H: Last flip = H

T: Last flip = T

E: Done

Let $\beta(i)$ be the average time from state i until the MC hits state E.

We claim that (these are called the first step equations)

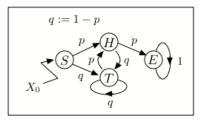
$$\beta(S) = 1 + p\beta(H) + q\beta(T)$$

$$\beta(H) = 1 + p0 + q\beta(T)$$

$$\beta(T) = 1 + p\beta(H) + q\beta(T).$$

Solving, we find

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average? Here is a picture:



S: Start

H: Last flip = H

T: Last flip = T

E: Done

Let $\beta(i)$ be the average time from state i until the MC hits state E.

We claim that (these are called the first step equations)

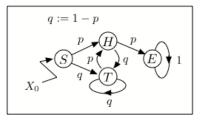
$$\beta(S) = 1 + p\beta(H) + q\beta(T)$$

$$\beta(H) = 1 + p0 + q\beta(T)$$

$$\beta(T) = 1 + p\beta(H) + q\beta(T).$$

Solving, we find $\beta(S) = 2 + 3qp^{-1} + q^2p^{-2}$.

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average? Here is a picture:



S: Start

H: Last flip = H

T: Last flip = T

E: Done

Let $\beta(i)$ be the average time from state i until the MC hits state E.

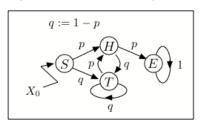
We claim that (these are called the first step equations)

$$\beta(S) = 1 + p\beta(H) + q\beta(T)$$

$$\beta(H) = 1 + p0 + q\beta(T)$$

$$\beta(T) = 1 + p\beta(H) + q\beta(T).$$

Solving, we find $\beta(S) = 2 + 3qp^{-1} + q^2p^{-2}$. (E.g., $\beta(S) = 6$ if p = 1/2.)

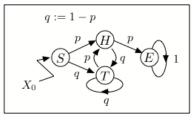


S: Start

H: Last flip = H

 $T{:}$ Last flip = T

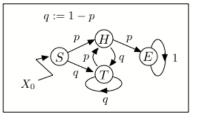
E: Done



S: Start H: Last flip = H T: Last flip = T

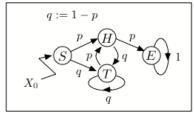
E: Done

Let us justify the first step equation for $\beta(T)$.



S: Start H: Last flip = H T: Last flip = T E: Done

Let us justify the first step equation for $\beta(T)$. The others are similar.



S: Start

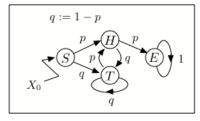
H: Last flip = H

T: Last flip = T

E: Done

Let us justify the first step equation for $\beta(T)$. The others are similar.

N(T) – number of steps, starting from T until the MC hits E.



S: Start

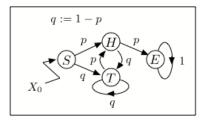
H: Last flip = H

T: Last flip = T

E: Done

Let us justify the first step equation for $\beta(T)$. The others are similar.

N(T) – number of steps, starting from T until the MC hits E. N(H) – be defined similarly.



S: Start

H: Last flip = H

T: Last flip = T

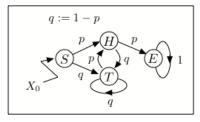
E: Done

Let us justify the first step equation for $\beta(T)$. The others are similar.

N(T) – number of steps, starting from T until the MC hits E.

N(H) – be defined similarly.

N'(T) – number of steps after the second visit to T until MC hits E.



S: Start

H: Last flip = H

T: Last flip = T

E: Done

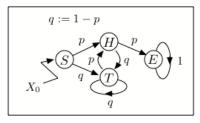
Let us justify the first step equation for $\beta(T)$. The others are similar.

N(T) – number of steps, starting from T until the MC hits E.

N(H) – be defined similarly.

N'(T) – number of steps after the second visit to T until MC hits E.

$$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$$



S: Start

H: Last flip = H

T: Last flip = T

E: Done

Let us justify the first step equation for $\beta(T)$. The others are similar.

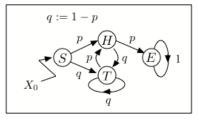
N(T) – number of steps, starting from T until the MC hits E.

N(H) – be defined similarly.

N'(T) – number of steps after the second visit to T until MC hits E.

$$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$$

where $Z = 1\{\text{first flip in } T \text{ is } H\}.$



S: Start

H: Last flip = H

T: Last flip = T

E: Done

Let us justify the first step equation for $\beta(T)$. The others are similar.

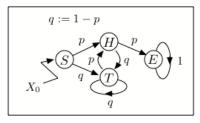
N(T) – number of steps, starting from T until the MC hits E.

N(H) – be defined similarly.

N'(T) – number of steps after the second visit to T until MC hits E.

$$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$$

where Z = 1 {first flip in T is H}. Since Z and N(H) are independent,



S: Start

H: Last flip = H

T: Last flip = T

E: Done

Let us justify the first step equation for $\beta(T)$. The others are similar.

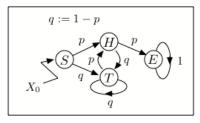
N(T) – number of steps, starting from T until the MC hits E.

N(H) – be defined similarly.

N'(T) – number of steps after the second visit to T until MC hits E.

$$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$$

where $Z = 1\{\text{first flip in } T \text{ is } H\}$. Since Z and N(H) are independent, and Z and N'(T) are independent,



S: Start

H: Last flip = H

T: Last flip = T

E: Done

Let us justify the first step equation for $\beta(T)$. The others are similar.

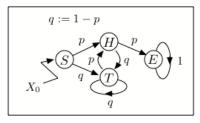
N(T) – number of steps, starting from T until the MC hits E.

N(H) – be defined similarly.

N'(T) – number of steps after the second visit to T until MC hits E.

$$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$$

where $Z = 1\{\text{first flip in } T \text{ is } H\}$. Since Z and N(H) are independent, and Z and N'(T) are independent, taking expectations, we get



S: Start

H: Last flip = H

T: Last flip = T

E: Done

Let us justify the first step equation for $\beta(T)$. The others are similar.

N(T) – number of steps, starting from T until the MC hits E.

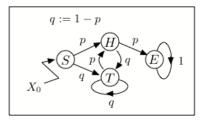
N(H) – be defined similarly.

N'(T) – number of steps after the second visit to T until MC hits E.

$$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$$

where $Z = 1\{\text{first flip in } T \text{ is } H\}$. Since Z and N(H) are independent, and Z and N'(T) are independent, taking expectations, we get

$$E[N(T)] = 1 + pE[N(H)] + qE[N'(T)],$$



S: Start

H: Last flip = H

T: Last flip = T

E: Done

Let us justify the first step equation for $\beta(T)$. The others are similar.

N(T) – number of steps, starting from T until the MC hits E.

N(H) – be defined similarly.

i.e.,

N'(T) – number of steps after the second visit to T until MC hits E.

$$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$$

where $Z = 1\{\text{first flip in } T \text{ is } H\}$. Since Z and N(H) are independent, and Z and N'(T) are independent, taking expectations, we get

$$E[N(T)] = 1 + pE[N(H)] + qE[N'(T)],$$

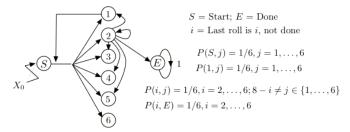
$$\beta(T) = 1 + p\beta(H) + q\beta(T).$$

You roll a balanced six-sided die until the sum of the last two rolls is 8.

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die,

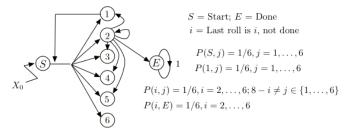
You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?



The arrows out of $3, \ldots, 6$ (not shown) are similar to those out of 2.

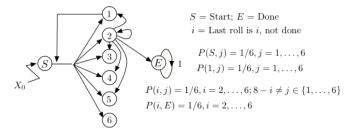
You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?



The arrows out of $3, \dots, 6$ (not shown) are similar to those out of 2.

$$\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j);$$

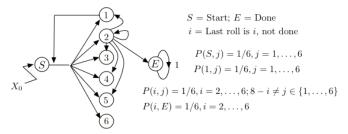
You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?



The arrows out of $3, \dots, 6$ (not shown) are similar to those out of 2.

$$\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j);$$

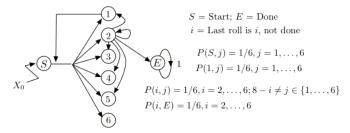
You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?



The arrows out of 3, ..., 6 (not shown) are similar to those out of 2.

$$\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(i) = 1 + \frac{1}{6} \sum_{j=1,\dots,6; j \neq 8-i} \beta(j), i = 2,\dots,6.$$

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?

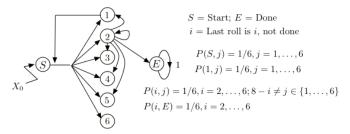


The arrows out of $3, \ldots, 6$ (not shown) are similar to those out of 2.

$$\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(i) = 1 + \frac{1}{6} \sum_{j=1,\dots,6; j \neq 8-i} \beta(j), i = 2,\dots,6.$$

Symmetry: $\beta(2) = \cdots = \beta(6) =: \gamma$.

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?

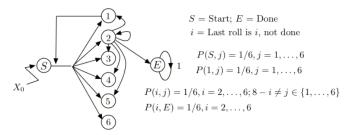


The arrows out of $3, \ldots, 6$ (not shown) are similar to those out of 2.

$$\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(i) = 1 + \frac{1}{6} \sum_{j=1,\dots,6; j \neq 8-i} \beta(j), i = 2,\dots,6.$$

Symmetry: $\beta(2) = \cdots = \beta(6) =: \gamma$. Also, $\beta(1) = \beta(S)$.

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?



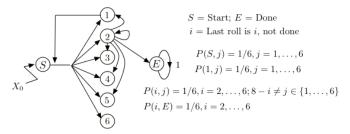
The arrows out of $3, \ldots, 6$ (not shown) are similar to those out of 2.

$$\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(i) = 1 + \frac{1}{6} \sum_{j=1,\dots,6; j \neq 8-i} \beta(j), i = 2,\dots,6.$$

Symmetry: $\beta(2) = \cdots = \beta(6) =: \gamma$. Also, $\beta(1) = \beta(S)$. Thus,

$$\beta(S) = 1 + (5/6)\gamma + \beta(S)/6;$$

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?



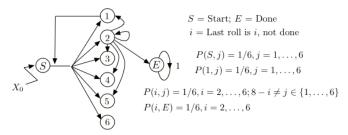
The arrows out of $3, \ldots, 6$ (not shown) are similar to those out of 2.

$$\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(i) = 1 + \frac{1}{6} \sum_{j=1,\dots,6; j \neq 8-i} \beta(j), i = 2,\dots,6.$$

Symmetry: $\beta(2) = \cdots = \beta(6) =: \gamma$. Also, $\beta(1) = \beta(S)$. Thus,

$$\beta(S) = 1 + (5/6)\gamma + \beta(S)/6; \quad \gamma = 1 + (4/6)\gamma + (1/6)\beta(S).$$

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?



The arrows out of $3, \ldots, 6$ (not shown) are similar to those out of 2.

$$\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(i) = 1 + \frac{1}{6} \sum_{j=1,\dots,6; j \neq 8-i} \beta(j), i = 2,\dots,6.$$

Symmetry:
$$\beta(2) = \cdots = \beta(6) =: \gamma$$
. Also, $\beta(1) = \beta(S)$. Thus,
$$\beta(S) = 1 + (5/6)\gamma + \beta(S)/6; \quad \gamma = 1 + (4/6)\gamma + (1/6)\beta(S).$$

$$\Rightarrow \cdots \beta(S) = 8.4.$$

You try to go up a ladder that has 20 rungs.

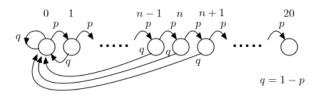
You try to go up a ladder that has 20 rungs. Each step, succeed or go up one rung with probability p=0.9.

You try to go up a ladder that has 20 rungs. Each step, succeed or go up one rung with probability p=0.9. Otherwise, you fall back to the ground.

You try to go up a ladder that has 20 rungs. Each step, succeed or go up one rung with probability p=0.9. Otherwise, you fall back to the ground. Bummer.

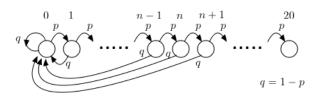
You try to go up a ladder that has 20 rungs. Each step, succeed or go up one rung with probability p=0.9. Otherwise, you fall back to the ground. Bummer. Time steps to reach the top of the ladder, on average?

You try to go up a ladder that has 20 rungs. Each step, succeed or go up one rung with probability p=0.9. Otherwise, you fall back to the ground. Bummer. Time steps to reach the top of the ladder, on average?



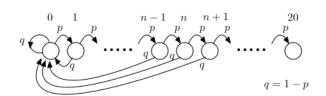
You try to go up a ladder that has 20 rungs. Each step, succeed or go up one rung with probability p = 0.9. Otherwise, you fall back to the ground. Bummer.

Time steps to reach the top of the ladder, on average?



$$\beta(n) = 1 + p\beta(n+1) + q\beta(0), 0 \le n < 19$$

You try to go up a ladder that has 20 rungs. Each step, succeed or go up one rung with probability p = 0.9. Otherwise, you fall back to the ground. Bummer. Time steps to reach the top of the ladder, on average?



$$\beta(n) = 1 + p\beta(n+1) + q\beta(0), 0 \le n < 19$$

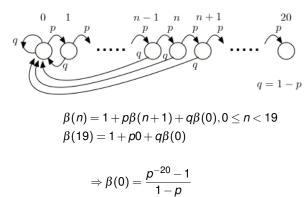
 $\beta(19) = 1 + p0 + q\beta(0)$

You try to go up a ladder that has 20 rungs.

Each step, succeed or go up one rung with probability p = 0.9.

Otherwise, you fall back to the ground. Bummer.

Time steps to reach the top of the ladder, on average?

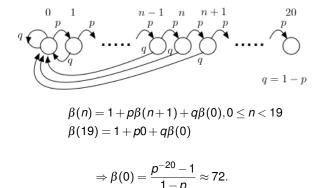


You try to go up a ladder that has 20 rungs.

Each step, succeed or go up one rung with probability p = 0.9.

Otherwise, you fall back to the ground. Bummer.

Time steps to reach the top of the ladder, on average?

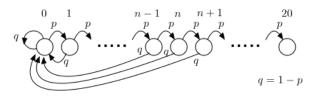


You try to go up a ladder that has 20 rungs.

Each step, succeed or go up one rung with probability p = 0.9.

Otherwise, you fall back to the ground. Bummer.

Time steps to reach the top of the ladder, on average?



$$\beta(n) = 1 + p\beta(n+1) + q\beta(0), 0 \le n < 19$$

 $\beta(19) = 1 + p0 + q\beta(0)$

$$\Rightarrow \beta(0) = \frac{p^{-20} - 1}{1 - p} \approx 72.$$

See Lecture Note 24 for algebra.

Game of "heads or tails" using coin with 'heads' probability p < 0.5.

Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10.

Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10.

Each step, flip yields 'heads', earn \$1.

Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10.

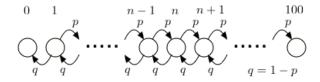
Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1.

Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10.

Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?

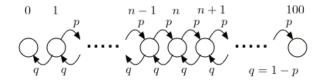
Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10.

Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?



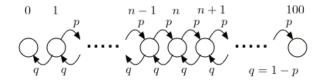
Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10.

Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?



Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10.

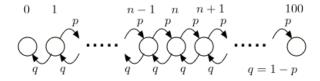
Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?



$$\alpha(0) =$$

Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10.

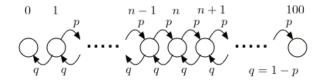
Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?



$$\alpha(0) = 0;$$

Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10.

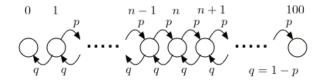
Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?



$$\alpha(0) = 0; \alpha(100) =$$

Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10.

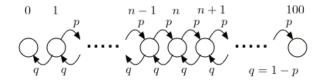
Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?



$$\alpha(0) = 0; \alpha(100) = 1.$$

Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10.

Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?

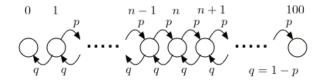


$$\alpha(0) = 0; \alpha(100) = 1.$$

 $\alpha(n) =$

Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10.

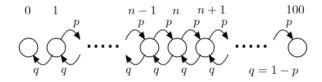
Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?



$$\alpha(0) = 0$$
; $\alpha(100) = 1$.
 $\alpha(n) = p\alpha(n+1) + q\alpha(n-1), 0 < n < 100$.

Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10.

Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?



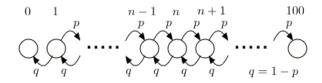
$$\alpha(0) = 0; \alpha(100) = 1.$$

 $\alpha(n) = p\alpha(n+1) + q\alpha(n-1), 0 < n < 100.$

$$\Rightarrow \alpha(n) = \frac{1 - \rho^n}{1 - \rho^{100}}$$
 with $\rho = qp^{-1}$.

Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10.

Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?



$$\alpha(0) = 0; \alpha(100) = 1.$$

 $\alpha(n) = p\alpha(n+1) + q\alpha(n-1), 0 < n < 100.$

$$\Rightarrow \alpha(n) = \frac{1 - \rho^n}{1 - \rho^{100}}$$
 with $\rho = qp^{-1}$. (See LN 24)

Game of "heads or tails" using coin with 'heads' probability p = .48.

Game of "heads or tails" using coin with 'heads' probability p = .48. Start with \$10.

Each step, flip yields 'heads', earn \$1.

Game of "heads or tails" using coin with 'heads' probability p=.48. Start with \$10.

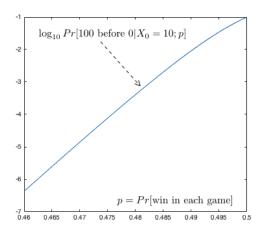
Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1.

Game of "heads or tails" using coin with 'heads' probability p = .48. Start with \$10.

Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?

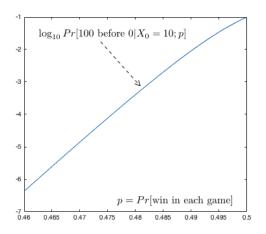
Game of "heads or tails" using coin with 'heads' probability p=.48. Start with \$10.

Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?



Game of "heads or tails" using coin with 'heads' probability p = .48. Start with \$10.

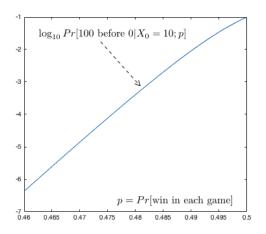
Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?



Less than 1 in a 1000.

Game of "heads or tails" using coin with 'heads' probability p = .48. Start with \$10.

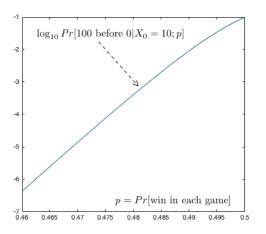
Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?



Less than 1 in a 1000. Morale of example:

Game of "heads or tails" using coin with 'heads' probability p = .48. Start with \$10.

Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?

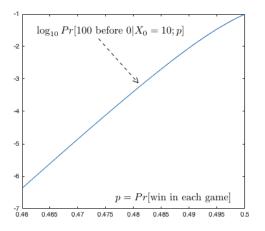


Less than 1 in a 1000. Morale of example: Money in Vegas

Game of "heads or tails" using coin with 'heads' probability p = .48. Start with \$10.

Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1.

What is the probability that you reach \$100 before \$0?



Less than 1 in a 1000. Morale of example: Money in Vegas stays in Vegas.

Let X_n be a MC on $\mathscr X$ and $A, B \subset \mathscr X$ with $A \cap B = \emptyset$.

Let X_n be a MC on $\mathscr X$ and $A,B \subset \mathscr X$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \ge 0 \mid X_n \in A\}$$

Let X_D be a MC on $\mathscr X$ and $A, B \subset \mathscr X$ with $A \cap B = \emptyset$. Define

 $T_A = \min\{n \ge 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \ge 0 \mid X_n \in B\}.$

Let X_n be a MC on $\mathscr X$ and $A,B\subset \mathscr X$ with $A\cap B=\emptyset$. Define

$$T_A = \min\{n \ge 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \ge 0 \mid X_n \in B\}.$$

Let
$$\beta(i) = E[T_A | X_0 = i]$$

Let X_n be a MC on \mathscr{X} and $A, B \subset \mathscr{X}$ with $A \cap B = \emptyset$. Define

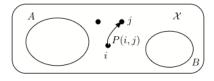
$$T_A = \min\{n \ge 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \ge 0 \mid X_n \in B\}.$$

Let
$$\beta(i) = E[T_A \mid X_0 = i]$$
 and $\alpha(i) = Pr[T_A < T_B \mid X_0 = i], i \in \mathscr{X}$.

Let X_n be a MC on \mathscr{X} and $A, B \subset \mathscr{X}$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \ge 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \ge 0 \mid X_n \in B\}.$$

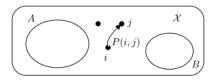
Let
$$\beta(i) = E[T_A \mid X_0 = i]$$
 and $\alpha(i) = Pr[T_A < T_B \mid X_0 = i], i \in \mathscr{X}$.



Let X_n be a MC on $\mathscr X$ and $A, B \subset \mathscr X$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \geq 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \geq 0 \mid X_n \in B\}.$$

Let $\beta(i) = E[T_A \mid X_0 = i]$ and $\alpha(i) = Pr[T_A < T_B \mid X_0 = i], i \in \mathscr{X}$.



Let X_n be a MC on $\mathscr X$ and $A, B \subset \mathscr X$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \ge 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \ge 0 \mid X_n \in B\}.$$

Let $\beta(i) = E[T_A \mid X_0 = i]$ and $\alpha(i) = Pr[T_A < T_B \mid X_0 = i], i \in \mathscr{X}$.

$$\begin{array}{c|c}
A & & j & X \\
& & P(i,j) & \\
& & & B
\end{array}$$

$$\beta(i) = 0, i \in A$$

Let X_n be a MC on $\mathscr X$ and $A, B \subset \mathscr X$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \ge 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \ge 0 \mid X_n \in B\}.$$

Let $\beta(i) = E[T_A \mid X_0 = i]$ and $\alpha(i) = Pr[T_A < T_B \mid X_0 = i], i \in \mathscr{X}$.

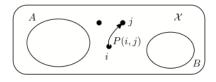
$$\beta(i) = 0, i \in A$$

$$\beta(i) = 1 + \sum_{i} P(i,j)\beta(j), i \notin A$$

Let X_n be a MC on $\mathscr X$ and $A, B \subset \mathscr X$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \ge 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \ge 0 \mid X_n \in B\}.$$

Let $\beta(i) = E[T_A \mid X_0 = i]$ and $\alpha(i) = Pr[T_A < T_B \mid X_0 = i], i \in \mathscr{X}$.



$$\beta(i) = 0, i \in A$$

$$\beta(i) = 1 + \sum_{j} P(i,j)\beta(j), i \notin A$$

$$\alpha(i) = 1, i \in A$$

Let X_n be a MC on \mathscr{X} and $A, B \subset \mathscr{X}$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \ge 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \ge 0 \mid X_n \in B\}.$$

Let $\beta(i) = E[T_A \mid X_0 = i]$ and $\alpha(i) = Pr[T_A < T_B \mid X_0 = i], i \in \mathscr{X}$.

$$eta(i) = 0, i \in A$$
 $eta(i) = 1 + \sum_{j} P(i,j)\beta(j), i \notin A$
 $lpha(i) = 1, i \in A$
 $lpha(i) = 0, i \in B$

Let X_n be a MC on \mathscr{X} and $A, B \subset \mathscr{X}$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \geq 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \geq 0 \mid X_n \in B\}.$$

Let $\beta(i) = E[T_A \mid X_0 = i]$ and $\alpha(i) = Pr[T_A < T_B \mid X_0 = i], i \in \mathscr{X}$.

$$\beta(i) = 0, i \in A$$

$$\beta(i) = 1 + \sum_{j} P(i,j)\beta(j), i \notin A$$

$$\alpha(i) = 1, i \in A$$

$$\alpha(i) = 0, i \in B$$

$$\alpha(i) = \sum_{j} P(i,j)\alpha(j), i \notin A \cup B.$$

Let X_n be a Markov chain on \mathscr{X} with P.

Let X_n be a Markov chain on $\mathscr X$ with P. Let $A \subset \mathscr X$

Let X_n be a Markov chain on $\mathscr X$ with P. Let $A \subset \mathscr X$ Let also $g: \mathscr X \to \mathfrak R$ be some function.

Let X_n be a Markov chain on $\mathscr X$ with P. Let $A \subset \mathscr X$ Let also $g: \mathscr X \to \mathfrak R$ be some function.

Define

$$\gamma(i) = E\left[\sum_{n=0}^{T_A} g(X_n) | X_0 = i\right], i \in \mathscr{X}.$$

Let X_n be a Markov chain on $\mathscr X$ with P. Let $A \subset \mathscr X$ Let also $g: \mathscr X \to \mathfrak R$ be some function.

Define

$$\gamma(i) = E\left[\sum_{n=0}^{T_A} g(X_n) | X_0 = i\right], i \in \mathscr{X}.$$

Then

$$\gamma(i) = \begin{cases} g(i), & \text{if } i \in A \end{cases}$$

Let X_n be a Markov chain on $\mathscr X$ with P. Let $A \subset \mathscr X$ Let also $g: \mathscr X \to \mathfrak R$ be some function.

Define

$$\gamma(i) = E\left[\sum_{n=0}^{T_A} g(X_n) | X_0 = i\right], i \in \mathscr{X}.$$

Then

$$\gamma(i) = \left\{ egin{array}{ll} g(i), & ext{if } i \in A \ g(i) + \sum_j P(i,j) \gamma(j), & ext{otherwise.} \end{array}
ight.$$

Let X_n be a Markov chain on $\mathscr X$ with P. Let $A \subset \mathscr X$ Let also $g: \mathscr X \to \mathfrak R$ be some function.

Define

$$\gamma(i) = E\left[\sum_{n=0}^{T_A} g(X_n) | X_0 = i\right], i \in \mathscr{X}.$$

Then

$$\gamma(i) = \left\{ egin{array}{ll} g(i), & ext{if } i \in A \ g(i) + \sum_j P(i,j) \gamma(j), & ext{otherwise.} \end{array}
ight.$$

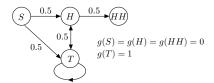
Flip a fair coin until you get two consecutive Hs.

Flip a fair coin until you get two consecutive *H*s.

What is the expected number of *T*s that you see?

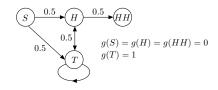
Flip a fair coin until you get two consecutive *H*s.

What is the expected number of *T*s that you see?



Flip a fair coin until you get two consecutive *H*s.

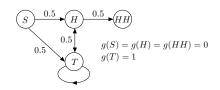
What is the expected number of *T*s that you see?



$$\gamma(S) = 0 + 0.5\gamma(H) + 0.5\gamma(T)$$

Flip a fair coin until you get two consecutive *H*s.

What is the expected number of *T*s that you see?

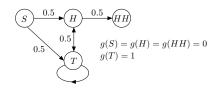


$$\gamma(S) = 0 + 0.5\gamma(H) + 0.5\gamma(T)$$

 $\gamma(H) = 0 + 0.5\gamma(HH) + 0.5\gamma(T)$

Flip a fair coin until you get two consecutive *H*s.

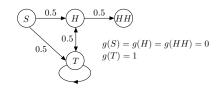
What is the expected number of *T*s that you see?



$$\gamma(S) = 0 + 0.5\gamma(H) + 0.5\gamma(T)
\gamma(H) = 0 + 0.5\gamma(HH) + 0.5\gamma(T)
\gamma(T) = 1 + 0.5\gamma(H) + 0.5\gamma(T)$$

Flip a fair coin until you get two consecutive *H*s.

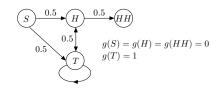
What is the expected number of *T*s that you see?



$$\gamma(S) = 0 + 0.5\gamma(H) + 0.5\gamma(T)
\gamma(H) = 0 + 0.5\gamma(HH) + 0.5\gamma(T)
\gamma(T) = 1 + 0.5\gamma(H) + 0.5\gamma(T)
\gamma(HH) = 0.$$

Flip a fair coin until you get two consecutive *H*s.

What is the expected number of *T*s that you see?



FSE:

$$\gamma(S) = 0 + 0.5\gamma(H) + 0.5\gamma(T)
\gamma(H) = 0 + 0.5\gamma(HH) + 0.5\gamma(T)
\gamma(T) = 1 + 0.5\gamma(H) + 0.5\gamma(T)
\gamma(HH) = 0.$$

Solving, we find $\gamma(S) = 2.5$.

Summary

Markov Chains

Summary

Markov Chains

Summary

Markov Chains

1.
$$Pr[X_{n+1} = j \mid X_0, ..., X_n = i] = P(i,j), i,j \in \mathscr{X}$$

2.
$$T_A = \min\{n \ge 0 \mid X_n \in A\}$$

3.
$$\alpha(i) = Pr[T_A < T_B | X_0 = i] \Rightarrow FSE$$

4.
$$\beta(i) = E[T_A|X_0 = i] \Rightarrow FSE$$

5.
$$\gamma(i) = E[\sum_{n=0}^{T_A} g(X_n) | X_0 = i] \Rightarrow FSE$$
.