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Application: Mixing

Each step, pick ball from each well-mixed urn. Transfer it to other urn.
Let Xn be the number of red balls in the bottom urn at step n.
What is E [Xn]?

Given Xn = m, Xn+1 = m+1 w.p. p and Xn+1 = m−1 w.p. q

where p = (1−m/N)2 (B goes up, R down)
and q = (m/N)2 (R goes up, B down).

Thus,
E [Xn+1|Xn] = Xn +p−q = Xn +1−2Xn/N = 1+ρXn, ρ := (1−2/N).
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Mixing

We saw that E [Xn+1|Xn] = 1+ρXn, ρ := (1−2/N).

Does that make sense? Decreases: Xn > n/2. Increases: Xn < n/2.
Hence,

E [Xn+1] = 1+ρE [Xn]

E [X2] = 1+ρN;E [X3] = 1+ρ(1+ρN) = 1+ρ +ρ
2N

E [X4] = 1+ρ(1+ρ +ρ
2N) = 1+ρ +ρ

2 +ρ
3N

E [Xn] = 1+ρ + · · ·+ρ
n−2 +ρ

n−1N.

Hence,

E [Xn] =
1−ρn−1

1−ρ
+ρ

n−1N,n ≥ 1.

As n→ ∞, goes to N/2.
Since 1−ρ = 2/N. And ρn→ 0.
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Application: Going Viral

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is bad at making copies).

You have d friends. Each of your friend retweets w.p. p.

Each of your friends has d friends, etc.

Does the rumor spread? Does it die out (mercifully)?

In this example, d = 4.
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Application: Going Viral

Fact: Number of tweets X = ∑
∞

n=1 Xn where Xn is tweets in level n.
Then, E [X ]< ∞ iff pd < 1.

Proof:
Given Xn = k , Xn+1 = B(kd ,p). Hence, E [Xn+1|Xn = k ] = kpd .

Thus, E [Xn+1|Xn] = pdXn. Consequently, E [Xn] = (pd)n−1,n ≥ 1.

If pd < 1, then E [X1 + · · ·+Xn]≤ (1−pd)−1 =⇒ E [X ]≤ (1−pd)−1.

If pd ≥ 1, then for all C one can find n s.t.
E [X ]≥ E [X1 + · · ·+Xn]≥ C.

In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞]> 0.
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In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞]> 0.
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An easy extension: Assume that everyone has an independent
number Di of friends with E [Di ] = d . Then, the same fact holds.

Why? Given Xn = k .
D1 = d1, . . . ,Dk = dk – numbers of friends of these Xn people.
=⇒ Xn+1 = B(d1 + · · ·+dk ,p). Hence,
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Application: Wald’s Identity

Here is an extension of an identity we used in the last slide.

Theorem Wald’s Identity

Assume that X1,X2, . . . and Z are independent, where

Z takes values in {0,1,2, . . .}

and E [Xn] = µ for all n ≥ 1.

Then,
E [X1 + · · ·+XZ ] = µE [Z ].

Proof:

E [X1 + · · ·+XZ |Z = k ] = µk .

Thus, E [X1 + · · ·+XZ |Z ] = µZ .

Hence, E [X1 + · · ·+XZ ] = E [µZ ] = µE [Z ].
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Theorem CE = MMSE

g(X ) := E [Y |X ] is the function of X that minimizes E [(Y −g(X ))2].
Proof:
Let h(X ) be any function of X . Then

E [(Y −h(X ))2] = E [(Y −g(X )+g(X )−h(X ))2]

= E [(Y −g(X ))2]+E [(g(X )−h(X ))2]

+2E [(Y −g(X ))(g(X )−h(X ))].

But,

E [(Y −g(X ))(g(X )−h(X ))] = 0 by the projection property.

Thus, E [(Y −h(X ))2]≥ E [(Y −g(X ))2].
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E [Y |X ] and L[Y |X ] as projections

L[Y |X ] is the projection of Y on {a+bX ,a,b ∈ℜ}: LLSE
E [Y |X ] is the projection of Y on {g(X ),g(·) : ℜ→ℜ}: MMSE.

Functions of X are linear subspace?
Vector (g(X (ω1), . . . ,g(X (ωΩ)).
Coordinates ω and ω ′ with X (ω) = X (ω ′)

have same value: vω = vω ′ .
Linear constraints! Linear Subspace.
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Summary

Conditional Expectation

I Definition: E [Y |X ] := ∑y yPr [Y = y |X = x ]

I Properties: Linearity, Y −E [Y |X ]⊥ h(X ); E [E [Y |X ]] = E [Y ]

I Some Applications:

I Calculating E [Y |X ]
I Diluting
I Mixing
I Rumors
I Wald

I MMSE: E [Y |X ] minimizes E [(Y −g(X ))2] over all g(·)
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Two-State Markov Chain
Here is a symmetric two-state Markov chain.

It describes a random
motion in {0,1}. Here, a is the probability that the state changes in
the next step.

Let’s simulate the Markov chain:
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Five-State Markov Chain
At each step, the MC follows one of the outgoing arrows of the current
state, with equal probabilities.

Let’s simulate the Markov chain:
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Finite Markov Chain: Definition

I A finite set of states: X = {1,2, . . . ,K}
I A probability distribution π0 on X : π0(i)≥ 0,∑i π0(i) = 1

I Transition probabilities: P(i , j) for i , j ∈X

P(i , j)≥ 0,∀i , j ; ∑j P(i , j) = 1,∀i
I {Xn,n ≥ 0} is defined so that

Pr [X0 = i] = π0(i), i ∈X (initial distribution)

Pr [Xn+1 = j | X0, . . . ,Xn = i] = P(i , j), i , j ∈X .
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First Passage Time - Example 1

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let’s define a Markov chain:

I X0 = S (start)

I Xn = S for n ≥ 1, if last flip was T and no H yet

I Xn = E for n ≥ 1, if we already got H (end)
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And Z = 1{first flip = H}. Then,

N = 1+(1−Z )×N ′+Z ×0.

Z and N ′ are independent. Also, E [N ′] = E [N] = β (S).
Hence, taking expectation,

β (S) = E [N] = 1+(1−p)E [N ′]+p0 = 1+qβ (S)+p0.
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I Xn = T , if last flip was T and we are not done

I Xn = H, if last flip was H and we are not done
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First Passage Time - Example 2
Let’s flip a coin with Pr [H] = p until we get two consecutive Hs. How
many flips, on average?

Here is a picture:

Let β (i) be the average time from state i until the MC hits state E .

We claim that (these are called the first step equations)

β (S) = 1+pβ (H)+qβ (T )

β (H) = 1+p0+qβ (T )

β (T ) = 1+pβ (H)+qβ (T ).

Solving, we find β (S) = 2+3qp−1+q2p−2. (E.g., β (S) = 6 if p = 1/2.)
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First Passage Time - Example 2

Let us justify the first step equation for β (T ). The others are similar.

N(T ) – number of steps, starting from T until the MC hits E .
N(H) – be defined similarly.
N ′(T ) – number of steps after the second visit to T until MC hits E .

N(T ) = 1+Z ×N(H)+(1−Z )×N ′(T )

where Z = 1{first flip in T is H}. Since Z and N(H) are independent,
and Z and N ′(T ) are independent, taking expectations, we get

E [N(T )] = 1+pE [N(H)]+qE [N ′(T )],

i.e.,
β (T ) = 1+pβ (H)+qβ (T ).
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First Passage Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8.
How many times do you have to roll the die, on average?

β (S)=1+
1
6

6

∑
j=1

β (j);β (1)=1+
1
6

6

∑
j=1

β (j);β (i)=1+
1
6 ∑

j=1,...,6;j 6=8−i
β (j), i =2, . . . ,6.

Symmetry: β (2) = · · ·= β (6) =: γ. Also, β (1) = β (S). Thus,

β (S) = 1+(5/6)γ +β (S)/6; γ = 1+(4/6)γ +(1/6)β (S).

⇒ ···β (S) = 8.4.
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First Passage Time - Example 4

You try to go up a ladder that has 20 rungs.

Each step, succeed or go up one rung with probability p = 0.9.
Otherwise, you fall back to the ground. Bummer.
Time steps to reach the top of the ladder, on average?

β (n) = 1+pβ (n+1)+qβ (0),0≤ n < 19

β (19) = 1+p0+qβ (0)

⇒ β (0) =
p−20−1

1−p
≈ 72.

See Lecture Note 24 for algebra.
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First Passage Time - Example 5
Game of “heads or tails” using coin with ‘heads’ probability p < 0.5.

Start with $10.
Each step, flip yields ‘heads’, earn $1. Otherwise, lose $1.
What is the probability that you reach $100 before $0?

Let α(n) be the probability of reaching 100 before 0, starting from n,
for n = 0,1, . . . ,100.

α(0) = 0;α(100) = 1.
α(n) = pα(n+1)+qα(n−1),0 < n < 100.

⇒ α(n) =
1−ρn

1−ρ100 with ρ = qp−1. (See LN 24)
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First Step Equations

Let Xn be a MC on X and A,B ⊂X with A∩B = /0. Define

TA = min{n ≥ 0 | Xn ∈ A} and TB = min{n ≥ 0 | Xn ∈ B}.

Let β (i) = E [TA | X0 = i] and α(i) = Pr [TA < TB | X0 = i], i ∈X .

The FSE are
β (i) = 0, i ∈ A
β (i) = 1+∑

j
P(i , j)β (j), i /∈ A

α(i) = 1, i ∈ A
α(i) = 0, i ∈ B
α(i) = ∑

j
P(i , j)α(j), i /∈ A∪B.
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Accumulating Rewards

Let Xn be a Markov chain on X with P. Let A⊂X

Let also g : X →ℜ be some function.

Define

γ(i) = E [
TA

∑
n=0

g(Xn)|X0 = i], i ∈X .

Then

γ(i) =
{

g(i), if i ∈ A
g(i)+∑j P(i , j)γ(j), otherwise.
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Example

Flip a fair coin until you get two consecutive Hs.

What is the expected number of Ts that you see?

H HH

T

S
0.5 0.5

0.5
0.5

g(S) = g(H) = g(HH) = 0

g(T ) = 1

FSE:

γ(S) = 0+0.5γ(H)+0.5γ(T )

γ(H) = 0+0.5γ(HH)+0.5γ(T )

γ(T ) = 1+0.5γ(H)+0.5γ(T )

γ(HH) = 0.

Solving, we find γ(S) = 2.5.
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Summary

Markov Chains

1. Pr [Xn+1 = j | X0, . . . ,Xn = i] = P(i , j), i , j ∈X

2. TA = min{n ≥ 0 | Xn ∈ A}

3. α(i) = Pr [TA < TB|X0 = i]⇒ FSE

4. β (i) = E [TA|X0 = i]⇒ FSE

5. γ(i) = E [∑
TA
n=0 g(Xn)|X0 = i]⇒ FSE .
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