Today

Finish up Conditional Expectation.
Markov Chains.



Application: Mixing

red balls
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Each step, pick ball from each well-mixed urn. Transfer it to other urn.
Let X, be the number of red balls in the bottom urn at step n.
What is E[Xn]?

Given Xp=m, Xpp1 =m+1wp. pand X1 =m—1w.p. g

where p = (1 —m/N)? (B goes up, R down)

and g = (m/N)? (R goes up, B down).

Thus,

E[Xp1|1Xn] = Xn+p—q=Xo+1—2Xa/N=1+pXn, p:=(1—2/N).



Mixing

We saw that E[ X, 1| Xp] =1+pXp, p:=(1—-2/N).
Does that make sense? Decreases: X, > n/2. Increases: X, < n/2.

Hence,
E[Xni1]=1+pE[Xn]
EXo]=1+pN;E[Xs]=1+p(1+pN)=1+p+p3N
EX)=1+p(1+p+p?N)=1+p+p%+p3N
EXal=1+p+-+p"2+p " N.

Hence,
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E[X;] = +p"'N,n>1.

As n— oo, goes to N/2.
Since 1 —p =2/N. And p" — 0.



Application: Mixing
Here is the plot.
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Application: Going Viral

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is bad at making copies).
You have d friends. Each of your friend retweets w.p. p.
Each of your friends has d friends, etc.

Does the rumor spread? Does it die out (mercifully)?
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In this example, d = 4.



Application: Going Viral
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X;=5

Fact: Number of tweets X =Y ,_; X, where X, is tweets in level n.
Then, E[X] <« iff pd < 1.

Proof:
Given X, = k, X,.1 = B(kd,p). Hence, E[X,.1|Xn = k] = kpd.

Thus, E[X,..1|Xn] = pdX,. Consequently, E[X,] = (pd)"",n>1.
If pd <1, then E[Xqy +---4+Xp] < (1 —pd)' = E[X] < (1 —pd)~".

If pd > 1, then for all C one can find n s.t.
E[X]> E[Xi+---+Xn] > C.

In fact, one can show that pd > 1 — Pr[X =] > 0.



Application: Going Viral
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An easy extension: Assume that everyone has an independent
number D; of friends with E[D;] = d. Then, the same fact holds.
Why? Given X, = k.

Dy = dy,...,Dx = dx — numbers of friends of these X, people.
= Xpp1 = B(di + -+ dk,p). Hence,
E[Xn+1|Xn:k,D1 :d1,...,Dk:dk] :p(d1 ++dk)
Thus, E[Xn+1 | Xn = k7D1,...,Dk] :,D(D1 +"'+Dk).
Consequently, E[X,1|Xn = k] = E[p(Dy +--- + Dx)] = pdk.

Finally, E[Xn11|Xn] = pdXn, and E[X,1] = pdE[X5].
We conclude as before.



Application: Wald’s Identity

Here is an extension of an identity we used in the last slide.
Theorem Wald’s Identity
Assume that Xy, X5, ... and Z are independent, where

Z takes values in {0,1,2,...}

and E[X;] = u foralln>1.

Then,
E[Xi+---+ Xz] = LE[Z].

Proof:

E[Xi+--+Xz|Z =Kk = uk.

Thus, E[X) + -+ Xz|Z] = uZ.

Hence, E[Xi+---+ Xz] = E[uZ] = nE[Z].



CE = MMSE

Theorem

E[Y|X] is the ‘best’ guess about Y based on X.
Specifically, it is the function g(X) of X that

minimizes E[(Y — g(X))?].

E[Y
v

X]

Linear Regression

» X




CE = MMSE

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes E[(Y — g(X))?].
Proof:
Let h(X) be any function of X. Then

E(Y-h(X)?] = E[(Y—g(X)+9(X)—h(X))]
= E[(Y—9(X))*]+ E[(9(X) — h(X))?]
+2E[(Y — g(X))(9(X) — h(X))].
But,

E[(Y —g(X))(g9(X) — h(X))] = 0 by the projection property.
Thus, E[(Y — h(X))?] > E[(Y —g(X))?].



E[Y|X] and L[Y|X] as projections

4

V= L[y|X] {8(X)9():R—R}

L[Y|X] is the projection of Y on {a+ bX,a,b e R}: LLSE
E[Y|X] is the projection of Y on {g(X),9(-) : ® — R}: MMSE.

Functions of X are linear subspace?
Vector (g(X(@1)....,g(X(x)).
Coordinates ® and o’ with X(®) = X (')
have same value: v, = v,y.
Linear constraints! Linear Subspace.



Summary

‘ Conditional Expectation ‘

v

Definition: E[Y|X] :=Y, yPr[Y = y|X = x]
Properties: Linearity, Y — E[Y|X] L h(X); E[E[Y|X]] = E[Y]

Some Applications:

v

v

Calculating E[Y|X]
Diluting

Mixing

Rumors

Wald

MMSE: E[Y|X] minimizes E[(Y — g(X))?] over all g(-)

Yy vV VvV VvV VY
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CS70: Markov Chains.

Markov Chains 1

1. Examples
2. Definition

3. First Passage Time



Two-State Markov Chain

Here is a symmetric two-state Markov chain. It describes a random
motion in {0,1}. Here, ais the probability that the state changes in

the next step.
QT

Let’'s simulate the Markov chain:
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Five-State Markov Chain

At each step, the MC follows one of the outgoing arrows of the current
state, with equal probabilities.

Let’s simulate the Markov chain:

E




Finite Markov Chain: Definition
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A finite set of states: 2" ={1,2,...,K}

S Xn=1i1=P(i,

| \\‘UH/\Q\\H” I |e=0e

Transition probabilities: P(i,j) for i,j € 2
P(i,j) > 0,Yi,j, ¥; P(i,j) = 1,¥i
{Xn,n> 0} is defined so that
PriXo =i] = mp(f),i € 2 (initial distribution)
PriXn1=Jj| Xo,--

i

A probability distribution my on 2" : mo(i) > 0,Y.; mp (i) =

JEeZ.

1



First Passage Time - Example 1

Let’s flip a coin with Pr[H] = p until we get H. How many flips, on
average?

Let’'s define a Markov chain:
> Xp = S (start)
» X,=Sforn>1,iflastflipwas T and no H yet

» X,=E for n>1, if we already got H (end)

g=1—mp »

T



First Passage Time - Example 1

Let’s flip a coin with Pr[H] = p until we get H. How many flips, on
average?

g=1—mp n
/"—__.—‘__‘t@
X

Let B(S) be the average time until E, starting from S.

Then,
B(S)=1+aB(S)+pO0.

(See next slide.) Hence,
pB(S)=1, sothat B(S)=1/p.

Note: Time until E is G(p).
The mean of G(p) is 1/p!!!



First Passage Time - Example 1
Let’s flip a coin with Pr[H] = p until we get H. How many flips, on
average?
g=1—mp »

T

Xo
Let B(S) be the average time until E.
Then,
B(S) =1+qB(S)+pO0.
Justification: N — number of steps until E, starting from S.
N’ — number of steps until E, after the second visit to S.
And Z = 1{first flip = H}. Then,
N=1+(1-2Z)x N +Zx0.
Z and N’ are independent. Also, E[N'] = E[N] = B(S).
Hence, taking expectation,
B(S) = E[N] =1+ (1—p)E[N']+p0=1+qgB(S)+ pO.



First Passage Time - Example 2

Let’s flip a coin with Pr[H] = p until we get two consecutive Hs. How
many flips, on average?
HTHTTTHTHTHTTHTHH
Let’s define a Markov chain:
> Xo= S (start)
» X, = E, if we already got two consecutive Hs (end)
» X,=T, if last flip was T and we are not done

» X, = H, if last flip was H and we are not done



First Passage Time - Example 2

Let’s flip a coin with Pr[H] = p until we get two consecutive Hs. How
many flips, on average? Here is a picture:

gi=1=p

p @ p S: Start
H: Last flip = H
ST Ja BV .
g q T: Last flip =T
Ay E: Done

)

Let B(i) be the average time from state 7 until the MC hits state E.
We claim that (these are called the first step equations)

B(S) =1+pB(H)+aB(T)
B(H)=1+p0+qB(T)
B(T)=1+pB(H)+qB(T).

Solving, we find B(S) =2+3qgp '+ ¢°p 2. (E.g., B(S)=6if p=1/2)



First Passage Time - Example 2

S: Start
P P
@ g 1 H: Last flip=H
T: Last flip =T
KXo E: Done

Let us justify the first step equation for B(T). The others are similar.

N(T) — number of steps, starting from T until the MC hits E.

N(H) — be defined similarly.

N'(T) — number of steps after the second visit to T until MC hits E.
N(T)=1+ZxNH)+(1-Z)x N'(T)

where Z = 1{first flip in T is H}. Since Z and N(H) are independent,
and Z and N'(T) are independent, taking expectations, we get

E[N(T)] =1+ pE[N(H)]+ qE[N'(T)],
B(T)=1+pB(H)+qB(T).

ie.,



First Passage Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8.

How many times do you have to roll the die, on average?

S = Start; £ = Done

¢ = Last roll is ¢, not done

P(5,)=1/6,j=1,..., [
Pll.j)=1/6,7=1...., [

Pli,j)=1/6,i=2,... G&8—iz#je{l,..., 6}
P(i,E)=1/6,i=2,.... 6

The arrows out of 3,...,6 (not shown) are similar to those out of 2.

o

1

6
BS)=1+g LBUB=1+g L BORBO=T+g L BGLI=2.
j=1 j=1 j=1,....6;j#8—i
Symmetry: f(2) =--- = B(6) =: y. Also, (1) = B(S). Thus,

B(S)=1+(5/6)y+B(S)/6; v=1+(4/6)y+(1/6)B(S).
= ...B(S)=8.4

6.



First Passage Time - Example 4

You try to go up a ladder that has 20 rungs.

Each step, succeed or go up one rung with probability p = 0.9.
Otherwise, you fall back to the ground. Bummer.

Time steps to reach the top of the ladder, on average?

0 1 n—1 n mn+l 20
p p P P P p p

B(n)=1+pB(n+1)+qB(0),0<n<19
B(19) =1+p0+qB(0)

72071

:B(O):ﬂ_p

~72.

See Lecture Note 24 for algebra.



First Passage Time - Example 5
Game of “heads or tails” using coin with ‘heads’ probability p < 0.5.
Start with $10.
Each step, flip yields ‘heads’, earn $1. Otherwise, lose $1.
What is the probability that you reach $100 before $0?

7 n+1 I[][
P i i

g=1-—p

Let a(n) be the probability of reaching 100 before 0, starting from n,
forn=20,1,...,100.

a(0) =0;(100) = 1.
o(n)=pa(n+1)+qa(n—1),0 <n<100.
—p"

= a(n) = 11p100 with p = go~'. (See LN 24)




First Passage Time - Example 5
Game of “heads or tails” using coin with ‘heads’ probability p = .48.
Start with $10.
Each step, flip yields ‘heads’, earn $1. Otherwise, lose $1.
What is the probability that you reach $100 before $07?

log,, Pr{100 before 0| X, = 10; p| ~

~

p = Pr[win in each game]

7 s s s
046 0465 047 0475 048 0485 043 0495 05

Less than 1 in a 1000. Morale of example: Money in Vegas stays in Vegas.



First Step Equations
Let X, be a MC on 2 and A, B C 2 with AnB = 0. Define

Ta=min{n>0| X, € A} and Tg=min{n> 0| X, € B}.
Let B(i)=E[Ta| Xo=iland a(i)=Pr{Ta< Tg| Xo =il,ic 2.

A . i X
frey
! B

B()=0,icA
B()=1+Y P(.)B().i ¢ A

/
a(i)y=1,icA
a(i)=0,ieB

a(i) =Y P(i,j)a(j),i ¢ AUB,
7

The FSE are



Accumulating Rewards

Let X, be a Markov chain on 2 with P. Let AC &

Let also g: 2" — R be some function.

Define
Ta
y(i) = E[Z g Xn)| Xo=1],ie Z.
n=0
Then

N[ a(i), ifieA
V(I)—{ 9()+X;P(i,j)y(j), otherwise.



Example

Flip a fair coin until you get two consecutive Hs.
What is the expected number of Ts that you see?

9(S) =g(H) = g(HH) =0
9(T) =1

FSE:
S)=0+0.5y(H)+0.5¢(T)
H)=0+0.5y(HH)+0.59(T)

T)=1 +O 5y(H)+0.5¢(T)
HH

Y
Y

(
(
(
(

=

Solving, we find y(S) =2.5.



Summary

\ Markov Chains \

—_

CPriXps1=J| Xo,.... Xo =il = P(i.}),i,j € X
To=min{n>0]| X, € A}

o) = Pr[Ta< Tg|Xo =i]= FSE

B(i) = E[Ta|Xo = i] = FSE

Y(i) = EIL A0 9(X0)| Xo = /] = FSE.

o > 0D



