Today

Finish up Conditional Expectation.
Markov Chains.

Application: Mixing

red balls
=N-1

Each step, pick ball from each well-mixed urn. Transfer it to other urn.

Let X, be the number of red balls in the bottom urn at step n.
What is E[Xj]?

Given X, =m, Xp .1 =m+1wp. pand X1 =
where p = (1—m/N)? (B goes up, R down)
and g = (m/N)? (R goes up, B down).

Thus,
EXnit|Xnl=Xn+p—q=Xn+1-2Xy/N=1+pXn, p:=(1-2/N).

m—1w.p. q

Mixing

We saw that E[X,,,1|Xp] =14+pXp, p:=(1—-2/N).
Does that make sense? Decreases: X, > n/2. Increases: X, < n/2.
Hence,
E[Xpe1] = 1+ pE[Xy)
E[Xo] =1+pN; E[Xs] = 1+p(1+pN) = 1+p+p°N
EXg)=1+p(1+p+p?N)=1+p+p?+p3N
EXa=14p+---+p " 24p"'N.
Hence,

+p™'N,n>1.

1— n—1
EX = 2

As n— o, goes to N/2.
Since 1 —p =2/N. And p" — 0.

Application: Mixing
Here is the plot.
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Application: Going Viral

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is bad at making copies).
You have d friends. Each of your friend retweets w.p. p.
Each of your friends has d friends, etc.

Does the rumor spread? Does it die out (mercifully)?
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In this example, d = 4.

Application: Going Viral
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Fact: Number of tweets X =Y ;;_; X, where X, is tweets in level n.
Then, E[X] <« iff pd < 1.

Proof:
Given X, = k, X1 = B(kd,p). Hence, E[X,.1|Xn = k] = kpd.
Thus, E[Xny1]Xn] = pdX,. Consequently, E[X,] = (pd)"",n>1.
If pd < 1, then E[X; + -+ Xn] < (1 —pd)~" = E[X] < (1 - pd)~!
If pd > 1, then for all C one can find n s.t.
E[X]> E[Xi+---+Xn] > C. O

In fact, one can show that pd > 1 = Pr[X =] > 0.




Application: Going Viral
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An easy extension: Assume that everyone has an independent
number D; of friends with E[D;] = d. Then, the same fact holds.

Why? Given X, = k.
Dy =di,..., Dy = dix — numbers of friends of these X, people.
= Xpi1 = B(di +---+dk,p). Hence,

E[Xns1|Xn=k,Dy =dy,...,Dx = di] = p(ds +--- + dk).
Consequently, E[Xp.1|Xn = k] = E[p(D; +---+ Dg)] = pdk.
Finally, E[Xp,1|Xn] = pdXp, and E[Xp.1] = pdE[X].

We conclude as before.

Thus, E[Xp41|Xn =k, Di,..., D] = p(Ds + -+ + Dy)-

Application: Wald’s |dentity

Here is an extension of an identity we used in the last slide.
Theorem Wald’s Identity
Assume that X1, X,... and Z are independent, where

Z takes values in {0,1,2,...}

and E[X;] =pu foralln> 1.

Then,
E[Xi+---+ Xz] = uE[Z].

Proof:

E[Xy +---+ Xz|Z = k] = pk.

Thus, E[Xi +---+ Xz|Z] = uZ.

Hence, E[Xy +---+ X7] = E[uZ] = nE[Z].

CE = MMSE

Theorem

E[Y|X] is the ‘best’ guess about Y based on X.
Specifically, it is the function g(X) of X that

minimizes E[(Y — g(X))?].

E[Y|X]

P

Linear Regression

. X

CE = MMSE

Theorem CE = MMSE

9(X) := E[Y|X] is the function of X that minimizes E[(Y — g(X))?].

Proof:
Let h(X) be any function of X. Then

E[(Y—h(X))’] = EL(Y~g(X)+g(X)—h(X))]
EN(Y —g(X))?] + E[(9(X) ~ h(X))?]
+2E[(Y = g(X))(9(X) = h(X))].

But,
E[(Y —g(X))(g(X)— h(X))] = 0 by the projection property.
Thus, E[(Y — h(X))?] > E[(Y - g(X))?].

E[Y|X] and L[Y|X] as projections

VLX) ol0.g0) R o %t

L[Y|X] is the projection of Y on {a+bX,a,be R}: LLSE

E[Y|X] is the projection of Y on {g(X),g(:) : ® — R}: MMSE.

Functions of X are linear subspace?
Vector (g(X(®1),...,9(X(wq)).
Coordinates ® and o’ with X(®) = X (')
have same value: vy, = vy .
Linear constraints! Linear Subspace.

Summary

‘ Conditional Expectation ‘

> Definition: E[Y|X] =X, yPr[Y = y|X = x]

> Properties: Linearity, Y — E[Y|X] L h(X); E[E[Y|X]] = E[Y]

» Some Applications:

» Calculating E[Y|X]

vyVY vy

Diluting
Mixing
Rumors
Wald

» MMSE: E[Y|X] minimizes E[(Y — g(X))?] over all g(-)




CS70: Markov Chains.

Markov Chains 1

1. Examples
2. Definition
3. First Passage Time

Two-State Markov Chain

Here is a symmetric two-state Markov chain. It describes a random
motion in {0, 1}. Here, ais the probability that the state changes in

the next step.
e

Let’s simulate the Markov chain:
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Five-State Markov Chain

At each step, the MC follows one of the outgoing arrows of the current
state, with equal probabilities.

Let’s simulate the Markov chain:
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Finite Markov Chain: Definition

> A finite set of states: 2" ={1,2,....K}
» A probability distribution 7y on 2" : mo(i) > 0, % o (i) =
» Transition probabilities: P(i.j) fori,j € 2~
P(i,j) > 0,vi,j; ¥,; P(i.j) = 1,Vi
> {Xp,n> 0} is defined so that
Pr[Xo =il = mo(i),i € 2" (initial distribution)
Pr[Xni1=j| Xo,-...Xn =11 = P(i,j),i,je Z.

1

First Passage Time - Example 1

Let's flip a coin with Pr[H] = p until we get H. How many flips, on
average?

Let’s define a Markov chain:
> Xo =S (start)
» Xp,=Sforn>1,iflast flipwas T and no H yet
» X, =E for n>1, if we already got H (end)

g=1—p

/—“

First Passage Time - Example 1
Let's flip a coin with Pr[H] = p until we get H. How many flips, on

average?
g=1-p p
(7 ®
X()

Let B(S) be the average time until E, starting from S.

Then,
B(S)=1+4aB(S)+p0.

(See next slide.) Hence,
pB(S) =1, so that B(S)=1/p.

Note: Time until E is G(p).
The mean of G(p) is 1/p!!!




First Passage Time - Example 1
Let's flip a coin with Pr[H] = p until we get H. How many flips, on
average?

g=1-p v

G

Let B(S) be the average time until E.
Then,

B(S)=1+4qB(S)+p0.
Justification: N — number of steps until E, starting from S.
N’ — number of steps until E, after the second visit to S.
And Z = 1{first flip = H}. Then,
N=1+(1-2)x N +Zx0.
Z and N’ are independent. Also, E[N'] = E[N] = B(S).
Hence, taking expectation,

B(S) = EIN| = 1+ (1 p)EIN+p0 = 1+ gB(S) + pO.

First Passage Time - Example 2

Let’s flip a coin with Pr[H] = p until we get two consecutive Hs. How
many flips, on average?
HTHTTTHTHTHTTHTHH
Let’s define a Markov chain:
> Xo =S (start)
» X, = E, if we already got two consecutive Hs (end)
» X, =T, if last flip was T and we are not done

» X, =H, if last flip was H and we are not done

First Passage Time - Example 2

Let’s flip a coin with Pr[H] = p until we get two consecutive Hs. How
many flips, on average? Here is a picture:

g:=1-p
p @ p S: Start
H: Last flip=H
E 2l Ja By :
S g T: Last flip=T
Xo E: Done
q

Let B(i) be the average time from state i until the MC hits state E.
We claim that (these are called the first step equations)

B(S)=1+pB(H)+qB(T)
B(H)=1+p0+qB(T)
B(T)=1+pB(H)+qgB(T).

Solving, we find B(S) =2+3qp~ "+ ¢p~2. (E.g., B(S)=6if p=1/2.)

First Passage Time - Example 2

A p @ P S: Start
H: Last fip=H
3 q ptg)'q 93 ! T: Last flip=T

Xo E: Done
q

Let us justify the first step equation for B(T). The others are similar.

N(T) — number of steps, starting from T until the MC hits E.

N(H) — be defined similarly.

N'(T) — number of steps after the second visit to T until MC hits E.
N(T)=1+ZxN(H)+(1-2Z)x N(T)

where Z = 1{firstflipin T is H}. Since Z and N(H) are independent,

and Z and N'(T) are independent, taking expectations, we get
E[N(T)] =1+pE[N(H)]+qE[N'(T)],

B(T)=1+pB(H)+qB(T).

ie.,

First Passage Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8.

How many times do you have to roll the die, on average?

§ = Start; E = Done
i = Last roll is 7, not done
P(S.j)=1/6,j=1,....6
b P, =1/6=1.....6

P(i,j) = 1/6,i=2,...,6:8 =i #j € {1,...,6}
P(i,E)=1/6,i=2,....6

The arrows out of 3,... .6 (not shown) are similar to those out of 2.

6 6
BS)=1+1 Y BU:B) =142 Y BU:B()=1+1 ¥ BG)i=2.
65 65 5

j=1...6#8—i
Symmetry: §(2) =--- = B(6) =: 7. Also, (1) = B(S). Thus,
B(S)=1+(5/6)y+p(5)/6: v=1+(4/6)r+(1/6)B(S).
=..-B(S)=84.

First Passage Time - Example 4

You try to go up a ladder that has 20 rungs.

Each step, succeed or go up one rung with probability p = 0.9.
Otherwise, you fall back to the ground. Bummer.

Time steps to reach the top of the ladder, on average?

0 1 n-1 n n+l 20
P P P r P r P

B(n)=1+pB(n+1)+gp(0),0<n<19
B(19)=1+p0+qpB(0)

20
_p -
= B(0) = Tp ~T72.
See Lecture Note 24 for algebra.




First Passage Time - Example 5
Game of “heads or tails” using coin with ‘heads’ probability p < 0.5.
Start with $10.
Each step, flip yields ‘heads’, earn $1. Otherwise, lose $1.
What is the probability that you reach $100 before $0?

0 1 n-1 n n+l 100
g P P P P P

q q q q q q g=1-p

Let a(n) be the probability of reaching 100 before 0, starting from n,

First Passage Time - Example 5
Game of “heads or tails” using coin with ‘heads’ probability p = .48.
Start with $10.
Each step, flip yields ‘heads’, earn $1. Otherwise, lose $1.
What is the probability that you reach $100 before $0?

-1
—
log,, Pr(100 lit\zfuru X =108~

First Step Equations
Let X, be aMC on 2" and A, B c 2" with An B = 0. Define

Ta=min{n>0]| X, € A} and Tg =min{n>0| X, € B}.
Let B(i)=E[Ta| Xo=1iland a(i)= Pr{Ta< Tg| Xo =il,ic 2.

A . pj ¥
ﬁ":w)
! B

forn=0,1,...,100. The FSE are

. B(i)=0,icA
a(O):O,a(100):1 B(I):1+;P(I~/)ﬁU)I¢A

a(n) = pa(n+1)+qa(n—1),0 < n < 100. ‘ ali)=1,icA

» = Prlwin in each game
N al)=0.i< B
_ o . S
= a(n) = LW with p = gp~'. (See LN 24) a(i) = ZP(/-/)aU),/ ¢AUB.
Less than 1 in a 1000. Morale of example: Money in Vegas stays in Vegas. !
Accumulating Rewards Example Summary

Let X, be a Markov chain on 2" with P. Let Ac 2~
Let also g: 2" — R be some function.
Define
Ta
i) = E[Z g(Xn)| Xo=1],ie 2.

Then 0) ficA
. a(i), Imre
Y(I):{ a(i)+X;P(i.))7(), otherwise.

Flip a fair coin until you get two consecutive Hs.
What is the expected number of Ts that you see?

FSE:
S)=0+0.5y(H)+0.5¢(T)

%"
y(H) = 040.5y(HH) +0.5¢(T)
y(T):1+05y( ) +0.5y(T)
(HH

i
Solving, we find y(S) = 2.5.

Markov Chains

1. PriXp1 =4 | Xo,. ., Xo =il = P(i,j),i.j € 2
. Ta=min{n>0]| X, € A}

oi) = Pr[Ta< Tg|Xo =i = FSE

. B(i)=E[TalXo =il = FSE

i) = E[X 0 9(Xn) [ Xo = i] = FSE.

a A~ W N




