

Application: Mixing

Each step, pick ball from each well-mixed urn. Transfer it to other urn. Let X_{n} be the number of red balls in the bottom urn at step n. What is $E\left[X_{n}\right]$?
Given $X_{n}=m, X_{n+1}=m+1$ w.p. p and $X_{n+1}=m-1$ w.p. q where $p=(1-m / N)^{2}$ (B goes up, R down
and $q=(m / N)^{2}$ (R goes up, B down).
Thus,
$E\left[X_{n+1} \mid X_{n}\right]=X_{n}+p-q=X_{n}+1-2 X_{n} / N=1+\rho X_{n}, \rho:=(1-2 / N)$.

Application: Going Vira

Consider a social network (e.g., Twitter)
You start a rumor (e.g., Rao is bad at making copies).
You have d friends. Each of your friend retweets w.p. p.
Each of your friends has d friends, etc.
Does the rumor spread? Does it die out (mercifully)?

In this example, $d=4$.

Mixing

We saw that $E\left[X_{n+1} \mid X_{n}\right]=1+\rho X_{n}, \rho:=(1-2 / N)$
Does that make sense? Decreases: $X_{n}>n / 2$. Increases: $X_{n}<n / 2$ Hence,
$E\left[X_{n+1}\right]=1+\rho E\left[X_{n}\right]$
$E\left[X_{2}\right]=1+\rho N ; E\left[X_{3}\right]=1+\rho(1+\rho N)=1+\rho+\rho^{2} N$
$E\left[X_{4}\right]=1+\rho\left(1+\rho+\rho^{2} N\right)=1+\rho+\rho^{2}+\rho^{3} N$
$E\left[X_{n}\right]=1+\rho+\cdots+\rho^{n-2}+\rho^{n-1} N$.
Hence,

$$
E\left[X_{n}\right]=\frac{1-\rho^{n-1}}{1-\rho}+\rho^{n-1} N, n \geq 1 .
$$

As $n \rightarrow \infty$, goes to $N / 2$
Since $1-\rho=2 / N$. And $\rho^{n} \rightarrow 0$

Application: Going Viral

Fact: Number of tweets $X=\sum_{n=1}^{\infty} X_{n}$ where X_{n} is tweets in level n. Then, $E[X]<\infty$ iff $p d<1$.
Proof:
Given $X_{n}=k, X_{n+1}=B(k d, p)$. Hence, $E\left[X_{n+1} \mid X_{n}=k\right]=k p d$
Thus, $E\left[X_{n+1} \mid X_{n}\right]=p d X_{n}$. Consequently, $E\left[X_{n}\right]=(p d)^{n-1}, n \geq 1$.
If $p d<1$, then $E\left[X_{1}+\cdots+X_{n}\right] \leq(1-p d)^{-1} \Longrightarrow E[X] \leq(1-p d)^{-1}$.
If $p d \geq 1$, then for all C one can find n s.t.
$E[X] \geq E\left[X_{1}+\cdots+X_{n}\right] \geq C$.
In fact, one can show that $p d \geq 1 \Longrightarrow \operatorname{Pr}[X=\infty]>0$.

Application: Going Viral

An easy extension: Assume that everyone has an independent number D_{i} of friends with $E\left[D_{i}\right]=d$. Then, the same fact holds.
Why? Given $X_{n}=k$.
$D_{1}=d_{1}, \ldots, D_{k}=d_{k}$ - numbers of friends of these X_{n} people. $\Longrightarrow X_{n+1}=B\left(d_{1}+\cdots+d_{k}, p\right)$. Hence

$$
E\left[X_{n+1} \mid X_{n}=k, D_{1}=d_{1}, \ldots, D_{k}=d_{k}\right]=p\left(d_{1}+\cdots+d_{k}\right)
$$

Thus, $E\left[X_{n+1} \mid X_{n}=k, D_{1}, \ldots, D_{k}\right]=p\left(D_{1}+\cdots+D_{k}\right)$.
Consequently, $E\left[X_{n+1} \mid X_{n}=k\right]=E\left[p\left(D_{1}+\cdots+D_{k}\right)\right]=p d k$
Finally, $E\left[X_{n+1} \mid X_{n}\right]=p d X_{n}$, and $E\left[X_{n+1}\right]=p d E\left[X_{n}\right]$. We conclude as before.

CE = MMSE

Theorem CE $=$ MMSE

$g(X):=E[Y \mid X]$ is the function of X that minimizes $E\left[(Y-g(X))^{2}\right]$.
Proof:
Let $h(X)$ be any function of X. Then

$$
\begin{aligned}
E\left[(Y-h(X))^{2}\right]= & E\left[(Y-g(X)+g(X)-h(X))^{2}\right] \\
= & E\left[(Y-g(X))^{2}\right]+E\left[(g(X)-h(X))^{2}\right] \\
& +2 E[(Y-g(X))(g(X)-h(X))] .
\end{aligned}
$$

But,
$E[(Y-g(X))(g(X)-h(X))]=0$ by the projection property.
Thus, $E\left[(Y-h(X))^{2}\right] \geq E\left[(Y-g(X))^{2}\right]$.

Application: Wald's Identity

Here is an extension of an identity we used in the last slide.

Theorem Wald's Identity

Assume that X_{1}, X_{2}, \ldots and Z are independent, where
Z takes values in $\{0,1,2, \ldots\}$
and $E\left[X_{n}\right]=\mu$ for all $n \geq 1$.
Then,

$$
E\left[X_{1}+\cdots+X_{Z}\right]=\mu E[Z]
$$

Proof:
$E\left[X_{1}+\cdots+X_{Z} \mid Z=k\right]=\mu k$.
Thus, $E\left[X_{1}+\cdots+X_{Z} \mid Z\right]=\mu Z$.
Hence, $E\left[X_{1}+\cdots+X_{Z}\right]=E[\mu Z]=\mu E[Z]$.
$E[Y \mid X]$ and $L[Y \mid X]$ as projections

$L[Y \mid X]$ is the projection of Y on $\{a+b X, a, b \in \mathfrak{R}\}$: LLSE $E[Y \mid X]$ is the projection of Y on $\{g(X), g(\cdot): \Re \rightarrow \Re\}$: MMSE.
Functions of X are linear subspace?
Vector $\left(g\left(X\left(\omega_{1}\right), \ldots, g\left(X\left(\omega_{\Omega}\right)\right)\right.\right.$.
Vector $\left(g\left(X\left(\omega_{1}\right), \ldots, g\left(X\left(\omega_{\Omega}\right)\right)\right.\right.$.
Coordinates ω and ω^{\prime} with $X(\omega)=X\left(\omega^{\prime}\right)$
ordinates ω and ω^{\prime} with $X(\omega)=X X$
have same value: $v_{\omega}=v_{\omega^{\prime}}$.
hear constraints! Linear Subspace

CE = MMSE

Theorem
$E[Y \mid X]$ is the 'best' guess about Y based on X
Specifically, it is the function $g(X)$ of X that
minimizes $E\left[(Y-g(X))^{2}\right]$

Summary

Conditional Expectation

- Definition: $E[Y \mid X]:=\sum_{y} y \operatorname{Pr}[Y=y \mid X=x]$
- Properties: Linearity, $Y-E[Y \mid X] \perp h(X) ; E[E[Y \mid X]]=E[Y]$
- Some Applications:
- Calculating $E[Y \mid X]$
- Diluting
- Mixing
- Rumor
- Wald
- MMSE: $E[Y \mid X]$ minimizes $E\left[(Y-g(X))^{2}\right]$ over all $g(\cdot)$

CS70: Markov Chains.

Markov Chains 1

1. Examples
2. Definition
3. First Passage Time

Finite Markov Chain: Definition

- A finite set of states: $\mathscr{X}=\{1,2, \ldots, K\}$
- A probability distribution π_{0} on $\mathscr{X}: \pi_{0}(i) \geq 0, \Sigma_{i} \pi_{0}(i)=1$
- Transition probabilities: $P(i, j)$ for $i, j \in \mathscr{X}$

$$
P(i, j) \geq 0, \forall i, j ; \Sigma_{j} P(i, j)=1, \forall i
$$

- $\left\{X_{n}, n \geq 0\right\}$ is defined so that
$\operatorname{Pr}\left[X_{0}=i\right]=\pi_{0}(i), i \in \mathscr{X}$ (initial distribution)
$\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j), i, j \in \mathscr{X}$.

Two-State Markov Chain
Here is a symmetric two-state Markov chain. It describes a random motion in $\{0,1\}$. Here, a is the probability that the state changes in the next step.

Let's simulate the Markov chain:

First Passage Time - Example 1
Let's flip a coin with $\operatorname{Pr}[H]=p$ until we get H. How many flips, on average?
Let's define a Markov chain:

- $X_{0}=S$ (start)
- $X_{n}=S$ for $n \geq 1$, if last flip was T and no H yet
- $X_{n}=E$ for $n \geq 1$, if we already got H (end)

Five-State Markov Chain
At each step, the MC follows one of the outgoing arrows of the current state, with equal probabilities.

Let's simulate the Markov chain:

First Passage Time - Example 1
Let's flip a coin with $\operatorname{Pr}[H]=p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S
Then,

$$
\beta(S)=1+q \beta(S)+p 0 .
$$

(See next slide.) Hence,

$$
p \beta(S)=1 \text {, so that } \beta(S)=1 / p \text {. }
$$

Note: Time until E is $G(p)$.
The mean of $G(p)$ is $1 / p!$!

First Passage Time - Example 1
Let's flip a coin with $\operatorname{Pr}[H]=p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E.
Then,

$$
\beta(S)=1+q \beta(S)+p 0 .
$$

Justification: N - number of steps until E, starting from S.
N^{\prime} - number of steps until E, after the second visit to S.
And $Z=1\{$ first flip $=H\}$. Then,

$$
N=1+(1-Z) \times N^{\prime}+Z \times 0 .
$$

Z and N^{\prime} are independent. Also, $E\left[N^{\prime}\right]=E[N]=\beta(S)$. Hence, taking expectation,

$$
\beta(S)=E[N]=1+(1-p) E\left[N^{\prime}\right]+p 0=1+q \beta(S)+p 0 .
$$

First Passage Time - Example 2

S: Start
$H:$ Last flip $=H$
$T:$ Last flip $=T$
$T:$ Last flip $=T$
E: Done
Let us justify the first step equation for $\beta(T)$. The others are similar.
$N(T)$ - number of steps, starting from T until the MC hits E.
$N(H)$ - be defined similarly.
$N^{\prime}(T)$ - number of steps after the second visit to T until MC hits E

$$
N(T)=1+Z \times N(H)+(1-Z) \times N^{\prime}(T)
$$

where $Z=1$ ffirst flip in T is $H\}$. Since Z and $N(H)$ are independent, and Z and $N^{\prime}(T)$ are independent, taking expectations, we get
$E[N(T)]=1+p E[N(H)]+q E\left[N^{\prime}(T)\right]$,
i.e., $\quad \beta(T)=1+p \beta(H)+q \beta(T)$.

First Passage Time - Example 2

Let's flip a coin with $\operatorname{Pr}[H]=p$ until we get two consecutive Hs. How many flips, on average?
HTHTTTHTHTHTTHTHH

Let's define a Markov chain:

- $X_{0}=S$ (start)
- $X_{n}=E$, if we already got two consecutive H s (end)
- $X_{n}=T$, if last flip was T and we are not done
- $X_{n}=H$, if last flip was H and we are not done

First Passage Time - Example 3
You roll a balanced six-sided die until the sum of the last two rolls is 8 . How many times do you have to roll the die, on average?

$\beta(S)=1+\frac{1}{6} \sum_{j=1}^{6} \beta(j) ; \beta(1)=1+\frac{1}{6} \sum_{j=1}^{6} \beta(j) ; \beta(i)=1+\frac{1}{6}{ }_{j=1, \ldots, \ldots ; j \neq 8-i} \beta(j), i=2, \ldots, 6$.
Symmetry: $\beta(2)=\cdots=\beta(6)=: \gamma$. Also, $\beta(1)=\beta(S)$. Thus,
$\beta(S)=1+(5 / 6) \gamma+\beta(S) / 6 ; \quad \gamma=1+(4 / 6) \gamma+(1 / 6) \beta(S)$.
$\Rightarrow \cdots \beta(S)=8.4$.

First Passage Time - Example 2

et's flip a coin with $\operatorname{Pr}[H]=p$ until we get two consecutive Hs. How many flips, on average? Here is a picture

S: Start
H : Last flip $=H$
T : Last flip $=T$
E : Done

Let $\beta(i)$ be the average time from state i until the MC hits state E.
We claim that (these are called the first step equations)

$$
\begin{aligned}
& \beta(S)=1+p \beta(H)+q \beta(T) \\
& \beta(H)=1+p 0+q \beta(T) \\
& \beta(T)=1+p \beta(H)+q \beta(T) .
\end{aligned}
$$

Solving, we find $\beta(S)=2+3 q p^{-1}+q^{2} p^{-2}$. (E.g., $\beta(S)=6$ if $p=1 / 2$.)

First Passage Time - Example 4

You try to go up a ladder that has 20 rungs.
Each step, succeed or go up one rung with probability $p=0.9$
Otherwise, you fall back to the ground. Bummer.
Time steps to reach the top of the ladder, on average?

$\beta(n)=1+p \beta(n+1)+q \beta(0), 0 \leq n<19$

$$
\beta(19)=1+p 0+q \beta(0)
$$

$$
\Rightarrow \beta(0)=\frac{p^{-20}-1}{1-p} \approx 72 .
$$

See Lecture Note 24 for algebra.

First Passage Time - Example 5
Game of "heads or tails" using coin with 'heads' probability $p<0.5$ Start with \$10.
Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach $\$ 100$ before $\$ 0$?

Let $\alpha(n)$ be the probability of reaching 100 before 0 , starting from n, for $n=0,1, \ldots, 100$
$\alpha(0)=0 ; \alpha(100)=1$.
$\alpha(n)=p \alpha(n+1)+q \alpha(n-1), 0<n<100$

$$
\Rightarrow \alpha(n)=\frac{1-\rho^{n}}{1-\rho^{100}} \text { with } \rho=q p^{-1} .(\text { See LN 24) }
$$

Accumulating Rewards

Let X_{n} be a Markov chain on \mathscr{X} with P. Let $A \subset \mathscr{X}$
Let also $g: \mathscr{X} \rightarrow \mathfrak{R}$ be some function.
Define

$$
\gamma(i)=E\left[\sum_{n=0}^{T_{A}} g\left(X_{n}\right) \mid X_{0}=i\right], i \in \mathscr{X} .
$$

Then

$$
\gamma(i)= \begin{cases}g(i), & \text { if } i \in A \\ g(i)+\sum_{j} P(i, j) \gamma(j), & \text { otherwise } .\end{cases}
$$

First Passage Time - Example 5
Game of "heads or tails" using coin with 'heads' probability $p=48$ Start with \$10.
each step tlip yields 'heads' earn \$1. Otherwise, lose \$1.
What is the probability that you reach $\$ 100$ before $\$ 0$?

Less than 1 in a 1000. Morale of example: Money in Vegas stays in Vegas.

Example

Flip a fair coin until you get two consecutive H s.
What is the expected number of T s that you see?

FSE:

$\gamma(S)=0+0.5 \gamma(H)+0.5 \gamma(T)$
$\gamma(H)=0+0.5 \gamma(H H)+0.5 \gamma(T)$
$\gamma(T)=1+0.5 \gamma(H)+0.5 \gamma(T)$
$\gamma(H H)=0$
Solving, we find $\gamma(S)=2.5$.

First Step Equations
Let X_{n} be a MC on \mathscr{X} and $A, B \subset \mathscr{X}$ with $A \cap B=\emptyset$. Define

$$
T_{A}=\min \left\{n \geq 0 \mid X_{n} \in A\right\} \text { and } T_{B}=\min \left\{n \geq 0 \mid X_{n} \in B\right\} .
$$

Let $\beta(i)=E\left[T_{A} \mid X_{0}=i\right]$ and $\alpha(i)=\operatorname{Pr}\left[T_{A}<T_{B} \mid X_{0}=i\right], i \in \mathscr{X}$.

The FSE are

$$
\begin{aligned}
& \beta(i)=0, i \in A \\
& \beta(i)=1+\sum_{j} P(i, j) \beta(j), i \notin A \\
& \alpha(i)=1, i \in A \\
& \alpha(i)=0, i \in B \\
& \alpha(i)=\sum_{i} P(i, j) \alpha(j), i \notin A \cup B .
\end{aligned}
$$

Summary

Markov Chains

1. $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j), i, j \in \mathscr{X}$
2. $T_{A}=\min \left\{n \geq 0 \mid X_{n} \in A\right\}$
3. $\alpha(i)=\operatorname{Pr}\left[T_{A}<T_{B} \mid X_{0}=i\right] \Rightarrow F S E$
4. $\beta(i)=E\left[T_{A} \mid X_{0}=i\right] \Rightarrow F S E$
5. $\gamma(i)=E\left[\sum_{n=0}^{T_{A}} g\left(X_{n}\right) \mid X_{0}=i\right] \Rightarrow F S E$.
