

Application: Going Viral

Mixing

We saw that $E[X_{n+1}|X_n] = 1 + \rho X_n$, $\rho := (1 - 2/N)$. Does that make sense? Decreases: $X_n > n/2$. Increases: $X_n < n/2$. Hence,

$$\begin{split} E[X_{n+1}] &= 1 + \rho E[X_n] \\ E[X_2] &= 1 + \rho N; E[X_3] = 1 + \rho (1 + \rho N) = 1 + \rho + \rho^2 N \\ E[X_4] &= 1 + \rho (1 + \rho + \rho^2 N) = 1 + \rho + \rho^2 + \rho^3 N \\ E[X_n] &= 1 + \rho + \dots + \rho^{n-2} + \rho^{n-1} N. \end{split}$$

Hence,

$$E[X_n] = \frac{1-\rho^{n-1}}{1-\rho} + \rho^{n-1}N, n \ge 1.$$

As $n \to \infty$, goes to N/2. Since $1 - \rho = 2/N$. And $\rho^n \to 0$.

Application: Going Viral

Fact: Number of tweets $X = \sum_{n=1}^{\infty} X_n$ where X_n is tweets in level *n*. Then, $E[X] < \infty$ iff pd < 1. **Proof:** Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1}|X_n = k] = kpd$.

Thus, $E[X_{n+1}|X_n] = pdX_n$. Consequently, $E[X_n] = (pd)^{n-1}$, $n \ge 1$. If pd < 1, then $E[X_1 + \dots + X_n] \le (1 - pd)^{-1} \Longrightarrow E[X] \le (1 - pd)^{-1}$. If $pd \ge 1$, then for all *C* one can find *n* s.t. $E[X] \ge E[X_1 + \dots + X_n] \ge C$.

Application: Wald's Identity

Here is an extension of an identity we used in the last slide. **Theorem** Wald's Identity Assume that $X_1, X_2, ...$ and Z are independent, where Z takes values in $\{0, 1, 2, ...\}$ and $E[X_n] = \mu$ for all $n \ge 1$. Then, $E[X_1 + \dots + X_Z] = \mu E[Z]$.

Proof: $E[X_1 + \dots + X_Z | Z = k] = \mu k.$ Thus, $E[X_1 + \dots + X_Z | Z] = \mu Z.$ Hence, $E[X_1 + \dots + X_Z] = E[\mu Z] = \mu E[Z].$

L[Y|X] is the projection of Y on $\{a+bX, a, b \in \Re\}$: LLSE E[Y|X] is the projection of Y on $\{g(X), g(\cdot) : \Re \to \Re\}$: MMSE. Functions of X are linear subspace? Vector $(g(X(\omega_1), \dots, g(X(\omega_0))).$

Vector $(g(X(\omega_1), ..., g(X(\omega_{\Omega}))))$. Coordinates ω and ω' with $X(\omega) = X(\omega')$ have same value: $v_{\omega} = v_{\omega'}$. Linear constraints! Linear Subspace.

Two-State Markov Chain

Here is a symmetric two-state Markov chain. It describes a random motion in $\{0,1\}$. Here, *a* is the probability that the state changes in the next step.

Let's simulate the Markov chain:

First Passage Time - Example 1

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

Let's define a Markov chain:

- ► X₀ = S (start)
- $X_n = S$ for $n \ge 1$, if last flip was T and no H yet
- $X_n = E$ for $n \ge 1$, if we already got H (end)

Five-State Markov Chain

At each step, the MC follows one of the outgoing arrows of the current state, with equal probabilities.

First Passage Time - Example 1

Let's flip a coin with Pr[H] = p until we get *H*. How many flips, on average?

Let $\beta(S)$ be the average time until *E*, starting from *S*. Then,

 $\beta(S) = 1 + q\beta(S) + p0.$

(See next slide.) Hence,

 $p\beta(S) = 1$, so that $\beta(S) = 1/p$.

Note: Time until *E* is G(p). The mean of G(p) is 1/p!!!

 $\beta(T) = 1 + p\beta(H) + q\beta(T).$

i.e.,

First Passage Time - Example 2

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average?

нтнтттнтнтнттнтнн

Let's define a Markov chain:

- \blacktriangleright X₀ = S (start)
- $X_n = E$, if we already got two consecutive Hs (end)
- $X_n = T$, if last flip was T and we are not done
- $X_n = H$, if last flip was H and we are not done

First Passage Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?

First Passage Time - Example 2

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average? Here is a picture:

S: Start H: Last flip = HT: Last flip = TE: Done

Let $\beta(i)$ be the average time from state *i* until the MC hits state *E*. We claim that (these are called the first step equations)

> $\beta(S) = 1 + p\beta(H) + q\beta(T)$ $\beta(H) = 1 + p0 + q\beta(T)$ $\beta(T) = 1 + p\beta(H) + q\beta(T).$

Solving, we find $\beta(S) = 2 + 3qp^{-1} + q^2p^{-2}$. (E.g., $\beta(S) = 6$ if p = 1/2.)

First Passage Time - Example 4

You try to go up a ladder that has 20 rungs. Each step, succeed or go up one rung with probability p = 0.9. Otherwise, you fall back to the ground. Bummer. Time steps to reach the top of the ladder, on average?

 $\beta(n) = 1 + p\beta(n+1) + q\beta(0), 0 \le n < 19$ $\beta(19) = 1 + p0 + q\beta(0)$

 $\Rightarrow \beta(0) = \frac{p^{-20}-1}{1-p} \approx 72.$

See Lecture Note 24 for algebra.

