Today

Finish Linear Regression:
Best linear function prediction of Y given X.

MMSE: Best Function that predicts Y from S.
Conditional Expectation.
Applications to random processes.



LLSE

Theorem
Consider two RVs X, Y with a given distribution Pr[X = x,Y = y].

Then
’ cov(X,Y)
Proof 1: L[Y|X] = Y= E[Y]+7r( X) (X —E[X]).

Y-V =(Y-E[Y])- S (X —EIX]).  E[Y V] 0by linearity.

Also, E[(Y — ¥)X] = 0, after a bit of algebra. (See next slide.)

Combine brown inequalities: £[(Y — V)(c+ dX)] =0 for any c,d.

Since: ¥ = a+pX for some a, 3, so 3¢,d s.t. Y—a—bX=c+dX.
Then, E[(Y — Y)(V —a—bX)] =0,va,b. Now,

E[(Y—a—bX)?|=E[(Y-V+V—a—bX)?
=E[(Y-Y)?]|+E[(Y—a—bX)?|+0>E[(Y-Y)?.

This shows that E[(Y — ¥)2] < E[(Y —a— bX)?], for all (a,b).
Thus Y is the LLSE. O



A Bit of Algebra

Y-V = (Y- E[Y]) - 2L (X ~ E[X]).

Hence, E[Y — ¥] = 0. We want to show that E[(Y — ¥)X] = 0.
Note that

E[(Y - V)X]=E[(Y - V)(X - E[X])],
because E[(Y — Y)E[X]] = 0.
Now,

E[(Y = V)(X — EIX])]

cov(X,Y)
= E[(Y—E[YD(X - E[X])] - T[X]E[(X_ EX)(X - E[X])]
cov(X,Y)

“variX] var[X]=0. O

=0 cov(X,Y) -

() Recall that cov(X. Y) = E[(X — E[X])(Y — E[Y])] and
var[X] = E[(X — E[X])?].



Estimation Error

We saw that the LLSE of Y given X is

cov(X,Y)

LIY|X]=Y =E[Y]+ var(X)

(X —E[X]).

How good is this estimator?
Or what is the mean squared estimation error?

We find

E[|Y — L[Y|X][?] = E[(Y — E[Y]—(cov(X, Y)/var(X))(X — E[X]))?]
= E[(Y — E[Y])’]—2(cov(X, Y)/var(X))E[(Y — E[Y])(X — E[X])]
+(cov(X,Y)/var(X))2E[(X — E[X])?]
cov(X,Y)?

= var(Y) var(X)

Without observations, the estimate is E[Y]. The error is var(Y). Observing X
reduces the error.



Estimation Error: A Picture

We saw that
L[Y|X]= ¥ = E[Y] + W(X EXD
and 2
E[lY - L[Y|X]] = var(Y) - W

Here is a picture when E[X] =0, E[Y] =0:
Dimensions correspond to sample points, uniform sample space.
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cov(X,Y)*
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Vector Y at dimension w is % Y ()



Linear Regression Examples
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Linear Regression Examples

Example 2:

We find:

E[X]=0;E[Y] =0; E[X?] =1/2,E[XY] =1/2;
var[X] = E[X?] - E[X]? = 1/2;cov(X,Y) = E[XY] - E[X]E[Y] =1/2;
cov(X,Y)

LR: ¥ = E[Y]+ var(X]

(X — E[X]) = X.



Linear Regression Examples

Example 3:

L

We find:

E[X] =0;E[Y] =0; E[X?] =1/2, E[XY] = —1/2;
var[X] = E[X?] — E[X]? =1/2;cov(X,Y) = E[XY] — E[X]E[Y] = —1/2;
cov(X,Y)

LR: ¥ = E[Y] + var(X]

(X - E[X]) = —X.



Linear Regression Examples

Example 4:
y
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We find:

E[X]=3;E[Y]=2.5; E[X?] = (3/15)(1 + 22 + 3% + 4% + 5%) = 11;
E[XY]=(1/15)(1 x1+1x 2+ +5x4)=8.4;
var[X] =11-9=2;cov(X,Y) =84-3x25=0.9;

LR: V:2.5+(;ﬁ(X—3) =1.15+0.45X.



LR: Another Figure

‘ _ cov( XY
SIODE — var[X]

Note that

» the LR line goes through (E[X], E[Y])

> its slope is S5




Summary

| Linear Regression |

1. Linear Regression: L[Y|X] = E[Y] + £4XY) (X E[X])

var
2. Non-Bayesian: minimize ¥ ,(Yn—a— bX,,)
3. Bayesian: minimize E[(Y —a— bX)?]



CS70: Noninear Regression.
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. Review: joint distribution, LLSE

Quadratic Regression

Definition of Conditional expectation
Properties of CE

Applications: Diluting, Mixing, Rumors
CE = MMSE



Review

Definitions Let X and Y be RVs on Q.
» Joint Distribution: PriX =x,Y =y]
» Marginal Distribution: Pr(X =x] =Y, PriX=x,Y =y]

> Conditional Distribution: Pr{Y = y|X = x] = 2262

» LLSE: L[Y|X] = a+ bX where a, b minimize E[(Y —a— bX)?].

We saw that

cov(X,Y)

LLYIX) = E[Y]+ =20

(X - E[X]).

Recall the non-Bayesian and Bayesian viewpoints.



Nonlinear Regression: Motivation

There are many situations where a good guess about Y given X is
not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level,
cancer risk).

. ’ Bettey estimate

Our goal: explore estimates ¥ = g(X) for nonlinear functions g().



Quadratic Regression
Let X, Y be two random variables defined on the same probability
space.

Definition: The quadratic regression of Y over X is the random
variable

Q[Y|X] = a+bX +cX?
where a, b, ¢ are chosen to minimize E[(Y —a— bX — cX?)?].

Derivation: We set to zero the derivatives w.r.t. a,b,c. We get
0 = E[Y-a-bX-cX?
0 E[(Y —a—bX —cX?)X]
0 = E[(Y-—a-bX-cX?)X?

We solve these three equations in the three unknowns (a, b, c).
Note: These equations imply that E[(Y — Q[Y|X])h(X)] = 0 for any
h(X) = d+ eX + fX2. That is, the estimation error is orthogonal to all

the quadratic functions of X. Hence, Q[Y|X] is the projection of Y
onto the space of quadratic functions of X.



Conditional Expectation

Definition Let X and Y be RVs on €. The conditional expectation of
Y given X is defined as

E[Y[X] = g(X)

where
9(x):=E[Y|X=x]:=) yPr[Y =y|X = x].

Fact Y
E[Y|X =x] =Y Y(0)Pr[o|X = x].

Proof: E[Y|X = x] = E[Y|A] with A= {w: X(®) = x}. O



Deja vu, all over again?

Have we seen this before? Yes.

Is anything new? Yes.

The idea of defining g(x) = E[Y|X = x] and then E[Y|X] = g(X).
Big deal? Quite! Simple but most convenient.

Recall that L[Y|X] = a+ bX is a function of X.

This is similar: E[Y|X] = g(X) for some function g(-).

In general, g(X) is not linear, i.e., not a+ bX. It could be that
9(X) = a+bX +cX2. Or that g(X) = 2sin(4X) +exp{—3X}. Or
something else.



Properties of CE
E[YIX=x]=) yPr[Y =y|X =x]
y

Theorem
a) X,Y independent = E[Y|X] = E[Y];

(
(b) E[aY +bZ|X] = aE[Y|X]+ bE[Z|X];
(c) E[Yh(X)|X] = h(X)E[Y|X],Vh();
(d) E[h(X)E[Y|X]] = E[h(X)Y],Vh(-);
(e) E[E[Y|X]] = E[Y].
Proof:

(a),(b) Obvious

(c) E[Yh(X)| X =x]= ZY 0))Pr{o| X = x]

_ZY X)Pr[o|X = x] = h(X)E[Y|X = X]



Properties of CE
E[Y|X=x]= ZyPr[Y y|X = x]

Theorem

(a) X, Y independent = E[Y|X] = E[Y];
(b) ElaY + bZ|X] = aE[Y|X]+ bE[Z|X];
(¢) E[Yh(X)|X] = h(X)E[Y|X],Vh(.);
(d) E[A(X)E[Y|X]] = E[h(X) Y], Vh(-);
(e) E[E[Y|X]] = E[Y].

Proof: (continued)
d) E[A(X)E[Y|X]] =Y h(x)E[Y|X = X]Pr[X = x]

=Y h(x)Y_ yPr[Y = y|X = X]Pr[X = x]
X y
:Zh(X)Zfo[X:X,y:}’]

Z yPr[X x,y =yl = E[h(X)Y].
Xy



Properties of CE

E[Y|X=x]= ZyPr[Y yIX =x]

Theorem

(a) X, Y independent = E[Y|X] = E[Y];
(b) E[aY+bZ|X] = aE[Y|X]+bE[Z|X];
(¢) E[Yh(X)|X] = h(X)E[Y|X],Vh();
(d) E[N(X)E[Y|X]] = E[h(X) Y], Vh(-);
(e) E[E[YIX]] = E[Y1].

Proof: (continued)
(e) Let h(X)=1in(d).



Properties of CE

Theorem

) X, Y independent = E[Y|X] = E[Y];
) El[aY +bZ|X] = aE[Y|X]+bE[Z|X];
) E[YA(X)|X] = h(X)E[Y|X].Vh(-);

) E[(X)E[Y|X]] = E[A(X) Y], Yh(");
e) E[E[Y|X]] = E[Y].

(a
(b
(c
(d
(

Note that (d) says that
E[(Y - E[Y|X])h(X)] = 0.

We say that the estimation error Y — E[Y|X] is orthogonal to every
function h(X) of X.

We call this the projection property. More about this later.



Application: Calculating E[Y|X]

Let X,Y,Z be i.i.d. with mean 0 and variance 1. We want to calculate

E[2+5X+7XY +11X?+13X322|X].

We find

E2+5X+7XY +11X2 +13X322|X]
=2+ 5X+7XE[Y|X]+11X% +13X3E[Z?|X]
=24+ 5X+7XE[Y]+11X% +13X3E[Z?]
=2+ 5X+11X2+13X3(var[Z] + E[Z]?)
=24+5X+11X2+13X5.



Application: Diluting

3N S 1
ey

X, =N Xo=N-1 X;=N-2 X,=N-2

red balls

Each step, pick ball from well-mixed urn. Replace with blue ball.
Let X, be the number of red balls in the urn at step n.
What is E[X;]?
Given X, =m, X,,.1 =m—1w.p. m/N (if you pick a red ball)
and X,,1 = m otherwise. Hence,

E[Xp1|[Xn=ml=m—(m/N)=m(N—-1)/N = X,p,
with p := (N—1)/N. Consequently,

E[Xpi1] = E[E[Xne1|Xal] = pE[Xa].n > 1.

%)”4 n>1.

) -

— E[Xp] =p™ TE[Xq] = N(



Diluting

Here is a plot:
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Diluting

By analyzing E[X,1]|Xn], we found that E[X,] = N(%)”q,n >1.
Here is another argument for that result.

Consider one particular red ball, say ball k.
Each step, it remains red w.p. (N—1)/N, if different ball picked. —
the probability still red at step nis [(N—1)/N]"~". Define:

Yn(k) = 1{ball k is red at step n}.
Then, X, = Ya(1)+---+ Ya(N). Hence,

E[Xn] = E[Ya(1)+---+ Ya(N)] = NE[Yn(1)]
= NPr[Y,(1)=1] = N[(N-1)/N]"1.



Application: Mixing

red balls

® ) N o .
", X R0

Each step, pick ball from each well-mixed urn. Transfer it to other urn.
Let X, be the number of red balls in the bottom urn at step n.
What is E[Xn]?

Given Xp=m, Xpp1 =m+1wp. pand X1 =m—1w.p. g

where p = (1 —m/N)? (B goes up, R down)

and g = (m/N)? (R goes up, B down).

Thus,

E[Xp1|1Xn] = Xn+p—q=Xo+1—2Xa/N=1+pXn, p:=(1—2/N).



Mixing

We saw that E[X,.1|Xp] =1+ pXn, p:=(1-2/N).
Does that make sense?

Hence,
E[Xni1] =1+ pE[X)]
ElXe] =1+pN;E[Xs] =1+p(1+pN) =1+p+p?N
EXs]=1+p(1+p+p3N)=1+p+p2+p°N
E[Xn] =1 +p_|_..._|_p”—2_|_pn—1N'
Hence,

E[X]*1_pn71+ "IN n>1
ni— 1_p p y M= 1.



Application: Mixing
Here is the plot.
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Application: Going Viral

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is bad at making copies).
You have d friends. Each of your friend retweets w.p. p.
Each of your friends has d friends, etc.

Does the rumor spread? Does it die out (mercifully)?

X1:1

[0 os o] [0 e0] e

/ VAW

‘o e O oHo o e oHo o e o‘k}:ﬁ

In this example, d = 4.



Application: Going Viral

[0 0’8 o] [0 p a0 %=s
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X;=5

Fact: Number of tweets X =Y ,_; X, where X, is tweets in level n.
Then, E[X] <« iff pd < 1.

Proof:
Given X, = k, X,.1 = B(kd,p). Hence, E[X,.1|Xn = k] = kpd.

Thus, E[X,..1|Xn] = pdX,. Consequently, E[X,] = (pd)"",n>1.
If pd <1, then E[Xqy +---4+Xp] < (1 —pd)' = E[X] < (1 —pd)~".

If pd > 1, then for all C one can find n s.t.
E[X]> E[Xi+---+Xn] > C.

In fact, one can show that pd > 1 — Pr[X =] > 0.



Application: Going Viral

T om o] [op ] x
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An easy extension: Assume that everyone has an independent
number D; of friends with E[D;] = d. Then, the same fact holds.

To see this, note that given X, = k, and given the numbers of friends
Dy =di,...,Dx = di of these X, people, one has
Xni1 = B(di +---+ dk,p). Hence,
E[Xni1|Xn =k, Dy =di,..., Dk = d¢] = p(di + -+ dk).
Thus, E[Xn+1 |Xn = k,D1,...,Dk] :,D(D1 —|—+Dk)
Consequently, E[X1|X, = k] = E[p(D1 +--- + Dx)] = pdk.
Finally, E[Xp1|Xn] = pdXn, and E[Xp,1] = pdE[Xj].

We conclude as before.



Application: Wald’s Identity

Here is an extension of an identity we used in the last slide.
Theorem Wald’s Identity
Assume that Xy, X5, ... and Z are independent, where

Z takes values in {0,1,2,...}

and E[X;] = u foralln>1.

Then,
E[Xi+---+ Xz] = LE[Z].

Proof:

E[Xi+--+Xz|Z =Kk = uk.

Thus, E[X) + -+ Xz|Z] = uZ.

Hence, E[Xi+---+ Xz] = E[uZ] = nE[Z].



CE = MMSE

Theorem

E[Y|X] is the ‘best’ guess about Y based on X.
Specifically, it is the function g(X) of X that

minimizes E[(Y — g(X))?].

E[Y
v

X]

Linear Regression

» X




CE = MMSE

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes E[(Y — g(X))?].
Proof:
Let h(X) be any function of X. Then

E(Y-h(X)?] = E[(Y—g(X)+9(X)—h(X))]
= E[(Y—9(X))*]+ E[(9(X) — h(X))?]
+2E[(Y — g(X))(9(X) — h(X))].
But,

E[(Y —g(X))(g9(X) — h(X))] = 0 by the projection property.
Thus, E[(Y — h(X))?] > E[(Y —g(X))?].



E[Y|X] and L[Y|X] as projections

%

{e+dX,e,d € R}

(X
E[Y|X] (%)

o Ly|x] (o) g0): R R}

L[Y|X] is the projection of Y on {a+ bX,a,b € R}: LLSE
E[Y|X] is the projection of Y on {g(X),9(-) : ® — R}: MMSE.



Summary

‘ Conditional Expectation ‘

v

Definition: E[Y|X] :=Y, yPr[Y = y|X = x]
Properties: Linearity, Y — E[Y|X] L h(X); E[E[Y|X]] = E[Y]

Some Applications:

v

v

Calculating E[Y|X]
Diluting

Mixing

Rumors

Wald

MMSE: E[Y|X] minimizes E[(Y — g(X))?] over all g(-)

Yy vV VvV VvV VY

v



